Volume 6 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
Yu Qiu, Li Ma, Qingfeng Kong, Min Li, Dongxu Cui, Shuai Zhang, Dewang Zeng, Rui Xiao. Earth abundant spinel for hydrogen production in a chemical looping scheme at 550 ℃. Green Energy&Environment, 2021, 6(5): 780-789. doi: 10.1016/j.gee.2020.06.011
Citation: Yu Qiu, Li Ma, Qingfeng Kong, Min Li, Dongxu Cui, Shuai Zhang, Dewang Zeng, Rui Xiao. Earth abundant spinel for hydrogen production in a chemical looping scheme at 550 ℃. Green Energy&Environment, 2021, 6(5): 780-789. doi: 10.1016/j.gee.2020.06.011

Earth abundant spinel for hydrogen production in a chemical looping scheme at 550 ℃

doi: 10.1016/j.gee.2020.06.011
  • Operating chemical looping process at mid-temperatures (550-750℃) presents exciting potential for the stable production of hydrogen. However, the reactivity of oxygen carriers is compromised by the detrimental effect of the relatively low temperatures on the redox kinetics. Although the reactivity at mid-temperature can be improved by the addition of noble metals, the high cost of these noble metal containing materials significantly hindered their scalable applications. In the current work, we propose to incorporate earth-abundant metals into the iron-based spinel for hydrogen production in a chemical looping scheme at mid-temperatures. Mn0.2Co0.4Fe2.4O4 shows a high hydrogen production performance at the average rate of ∼0.62 mmol g-1 min-1 and a hydrogen yield of ∼9.29 mmol g-1 with satisfactory stability over 20 cycles at 550℃. The mechanism studies manifest that the enhanced hydrogen production performance is a result of the improved oxygen-ion conductivity to enhance reduction reaction and high reactivity of reduced samples with steam. The performance of the oxygen carriers in this work is comparable to those noble-metal containing materials, enabling their potential for industrial applications.

     

  • loading
  • [1]
    C. Lu, K. Li, H. Wang, X. Zhu, Y. Wei, M. Zheng, C. Zeng, Appl. Energy 211(2018) 1-14.
    [2]
    Z. Dai, L. Ansaloni, L. Deng, Green Energy Environ. 1(2016) 102-128.
    [3]
    T. Li, R.S. Jayathilake, D.D. Taylor, E.E. Rodriguez, Chem. Commun. 55(2019) 4929-4932.
    [4]
    Z. Dai, M. Usman, M. Hillestad, L. Deng, Green Energy Environ. 1(2016) 266-275.
    [5]
    J. Kothandaraman, A. Goeppert, M. Czaun, G.A. Olah, G.K.S. Prakash, J. Am. Chem. Soc. 138(2016) 778-781.
    [6]
    H. Song, Z. Liu, Y. Wang, N. Zhang, X. Qu, K. Guo, M. Xiao, H. Gai, Green Energy Environ. 4(2019) 278-286.
    [7]
    X. Zhu, Y. Wei, H. Wang, K. Li, Int. J. Hydrogen Energy 38(2013) 4492-4501.
    [8]
    C. Ruan, Y. Tan, L. Li, J. Wang, X. Liu, X. Wang, AIChE J. 63(2017) 3450-3462.
    [9]
    K. Liu, M. Abass, Q. Zou, X. Yan, Green Energy Environ. 2(2017) 58-63.
    [10]
    Z. Cheng, D.S. Baser, S.G. Nadgouda, L. Qin, J.A. Fan, L.S. Fan, ACS Energy Lett. 3(2018) 1730-1736.
    [11]
    X. Zhao, K. Wu, W. Liao, Y. Wang, X. Hou, M. Jin, Z. Suo, H. Ge, Green Energy Environ. 4(2019) 300-310.
    [12]
    C. Ruan, Z.Q. Huang, J. Lin, L. Li, X. Liu, M. Tian, C. Huang, C.R. Chang, J. Li, X. Wang, Energy Environ. Sci. 12(2019) 767-779.
    [13]
    H.A. Alalwan, D.M. Cwiertny, V.H. Grassian, Chem. Eng. J. 319(2017) 279-287.
    [14]
    S. Liu, D. Xiang, Y. Xu, Z. Sun, Y. Cao, Appl. Energy 202(2017) 550-557.
    [15]
    F. Li, H.R. Kim, D. Sridhar, F. Wang, L. Zeng, J. Chen, L.S. Fan, Energy Fuels 23(2009) 4182-4189.
    [16]
    N. Galinsky, A. Mishra, J. Zhang, F. Li, Appl. Energy 157(2015) 358-367.
    [17]
    Q. Liu, C. Hu, B. Peng, C. Liu, Z. Li, K. Wu, H. Zhang, R. Xiao, Energy Convers. Manag. 199(2019) 111951.
    [18]
    R. Adhikari, L. Jin, F. Navarro-Pardo, D. Benetti, B. Alotaibi, S. Vanka, H. Zhao, Z. Mi, A. Vomiero, F. Rosei, Nanomater. Energy 27(2016) 265-274.
    [19]
    J. Zhang, B. Huang, Q. Shao, X. Huang, ACS Appl. Mater. Interfaces 10(2018) 21291-21296.
    [20]
    C. Duan, Y. Yu, J. Xiao, X. Zhang, L. Li, P. Yang, J. Wu, H. Xi, Sci. China Mater. 63(2020) 667-685.
    [21]
    Q. Imtiaz, N.S. Yüzbasi, P.M. Abdala, A.M. Kierzkowska, W. Van Beek, M. Broda, C.R. Müller, J. Mater. Chem. A 4(2016) 113-123.
    [22]
    Z. Zhao, M. Uddi, N. Tsvetkov, B. Yildiz, A.F. Ghoniem, J. Phys. Chem. C 120(2016) 16271-16289.
    [23]
    Y.A. Daza, D. Maiti, R.A. Kent, V.R. Bhethanabotla, J.N. Kuhn, Catal. Today 258(2015) 691-698.
    [24]
    Z. Zhang, Y. Zhu, H. Asakura, B. Zhang, J. Zhang, M. Zhou, Y. Han, T. Tanaka, A. Wang, T. Zhang, N. Yan, Nat. Commun. 8(2017) 16100.
    [25]
    M.A. Adnan, I. Pradiptya, T.I. Haque, M.M. Hossain, Energy Convers. Manag. 206(2020) 112430.
    [26]
    L. Liu, Y. Wu, J. Hu, D. Liu, M.R. Zachariah, Energy Fuels 31(2017) 11225-11233.
    [27]
    V. Manovic, E.J. Anthony, Environ. Sci. Technol. 45(2011) 10750-10756.
    [28]
    L. Zeng, Z. Cheng, J.A. Fan, L.S. Fan, J. Gong, Nat. Rev. Chem. 2(2018) 349-364.
    [29]
    N.S. Yüzbasi, A.M. Kierzkowska, Q. Imtiaz, P.M. Abdala, A. Kurlov, J.L.M. Rupp, C.R. Müller, J. Phys. Chem. C 120(2016) 18977-18985.
    [30]
    Z. Cheng, L. Qin, M. Guo, M. Xu, J.A. Fan, L.S. Fan, Phys. Chem. Chem. Phys. 18(2016) 32418-32428.
    [31]
    C. Brady, B. Murphy, B. Xu, ACS Catal. 7(2017) 3924-3928.
    [32]
    A. Tong, S. Bayham, M.V. Kathe, L. Zeng, S. Luo, L.S. Fan, Appl. Energy 113(2014) 1836-1845.
    [33]
    S. Cimino, F. Boccia, L. Lisi, J. CO2 Util. 37(2020) 195-203.
    [34]
    Y. Feng, X. Guo, Fuel 210(2017) 866-872.
    [35]
    B.J. Hare, D. Maiti, A.J. Meier, V.R. Bhethanabotla, J.N. Kuhn, Ind. Eng. Chem. Res. 58(2019) 12551-12560.
    [36]
    K. Svoboda, G. Slowinski, J. Rogut, D. Baxter, Energy Convers. Manag. 48(2007) 3063-3073.
    [37]
    A. Mishra, T. Li, F. Li, E.E. Santiso, Chem. Mater. 31(2018) 689-698.
    [38]
    C. Dueso, A. Abad, F. García-Labiano, L.F. de Diego, P. Gay an, J. Ad anez, A. Lyngfelt, Fuel 89(2010) 3399-3409.
    [39]
    D. Maiti, B.J. Hare, Y.A. Daza, A.E. Ramos, J.N. Kuhn, V.R. Bhethanabotla, Energy Environ. Sci. 11(2018) 648-659.
    [40]
    S. Ma, M. Li, G. Wang, L. Zhang, S. Chen, Z. Sun, J. Hu, M. Zhu, W. Xiang, Chem. Eng. J. 346(2018) 712-725.
    [41]
    N. Galinsky, M. Sendi, L. Bowers, F. Li, Appl. Energy 174(2016) 80-87.
    [42]
    L.M. Neal, A. Shafiefarhood, F. Li, ACS Catal. 4(2014) 3560-3569.
    [43]
    Y. Qiu, S. Zhang, D. Cui, M. Li, J. Zeng, D. Zeng, R. Xiao, Appl. Energy 252(2019) 113454.
    [44]
    R.L. Snyder, Powder Diffr. 7(1992) 186-193.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (163) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return