Volume 6 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
Zhenyu Wu, Jing Luo, Jiao Peng, Hong Liu, Baobao Chang, Xianyou Wang. Rational architecture design of yolk/double-shells Si-based anode material with double buffering carbon layers for high performance lithium-ion battery. Green Energy&Environment, 2021, 6(4): 517-527. doi: 10.1016/j.gee.2020.06.009
Citation: Zhenyu Wu, Jing Luo, Jiao Peng, Hong Liu, Baobao Chang, Xianyou Wang. Rational architecture design of yolk/double-shells Si-based anode material with double buffering carbon layers for high performance lithium-ion battery. Green Energy&Environment, 2021, 6(4): 517-527. doi: 10.1016/j.gee.2020.06.009

Rational architecture design of yolk/double-shells Si-based anode material with double buffering carbon layers for high performance lithium-ion battery

doi: 10.1016/j.gee.2020.06.009
  • Among the many strategies to fabricate the silicon/carbon composite, yolk/double-shells structure can be regarded as an effective strategy to overcome the intrinsic defects of Si-based anode materials for Li-ion batteries (LIBs). Hereon, a facile and inexpensive technology to prepare silicon/carbon composite with yolk/double-shells structure is proposed, in which the double buffering carbon shells are fabricated. The silicon/carbon nanoparticles with core–shell structure are encapsulated by SiO2 and external carbon layer, and it shows the yolk/double-shells structure via etching the SiO2 sacrificial layer. The multiply shells structure not only significantly improves the electrical conductivity of composite, but also effectively prevents the exposure of Si particles from the electrolyte composition. Meanwhile, the yolk/double-shells structure can provide enough space to accommodate the volume change of the electrode during charge/discharge process and avoid the pulverization of Si particles. Moreover, the as–prepared YDS-Si/C shows excellent performance as anode of LIBs, the reversible capacity is as high as 1066 mA h g-1 at the current density of 0.5 A g-1 after 200 cycles. At the same time, the YDS-Si/C has high capacity retention and good cyclic stability. Therefore, the unique architecture design of yolk/double-shells for Si/C composite provides an instructive exploration for the development of next generation anode materials of LIBs with high electrochemical performances and structural stability.

     

  • loading
  • [1]
    M.M. Thackeray, C. Wolverton, E.D. Isaacs, Energy Environ. Sci. 5(2012) 7854-7863.
    [2]
    B. Xu, S. Qi, M. Jin, X. Cai, L. Lai, Z. Sun, X. Han, Z. Lin, H. Shao, P. Peng, Z. Xiang, J.E. Ten Elshof, R. Tan, C. Liu, Z. Zhang, X. Duan, J. Ma, Chin. Chem. Lett. 30(2019) 2053-2064.
    [3]
    A. Casimir, H. Zhang, O. Ogoke, J.C. Amine, J. Lu, G. Wu, Nano Energy 27(2016) 359-376.
    [4]
    H. Su, A.A. Barragan, L. Geng, D. Long, L. Ling, K.N. Bozhilov, L. Mangolini, J. Guo, Angew. Chem. Int. Ed. 56(2017) 10780-10785.
    [5]
    J. Jiang, H. Zhang, J. Zhu, L. Li, Y. Liu, T. Meng, L. Ma, M. Xu, J. Liu, C.M. Li, ACS Appl. Mater. Interfaces 10(2018) 24157-24163.
    [6]
    P. Li, G. Zhao, X. Zheng, X. Xu, C. Yao, W. Sun, S.X. Dou, Energy Storage Mater. 15(2018) 422-446.
    [7]
    X. Zuo, J. Zhu, P. Müller-Buschbaum, Y. Cheng, Nano Energy 31(2017) 113-143.
    [8]
    C.K. Chan, R. Ruffo, S.S. Hong, Y. Cui, J. Power Sources 189(2009) 1132-1140.
    [9]
    Y. Jin, B. Zhu, Z. Lu, N. Liu, J. Zhu, Adv. Energy Mater. 7(2017) 1700715.
    [10]
    J. Xie, L. Tong, L. Su, Y. Xu, L. Wang, Y. Wang, J. Power Sources 342(2017) 529-536.
    [11]
    D. Qiu, G. Bu, B. Zhao, Z. Lin, J. Solid State Electrochem. 19(2015) 935-939.
    [12]
    H. Kim, M. Seo, M. Park, J. Cho, Angew. Chem. Int. Ed. 49(2010) 2146-2149.
    [13]
    M. Ge, J. Rong, X. Fang, C. Zhou, Nano Lett. 12(2012) 2318-2323.
    [14]
    C.K. Chan, R.N. Patel, M.J. O Connell, B.A. Korgel, Y. Cui, ACS Nano 4(2010) 1443-1450.
    [15]
    J. Ryu, D. Hong, S. Choi, S. Park, ACS Nano 10(2016) 2843-2851.
    [16]
    W. Kim, Y. Hwa, J. Shin, M. Yang, H. Sohn, S. Hong, Nanoscale 6(2014) 4297-4302.
    [17]
    W. Kim, J. Choi, S. Hong, Nano Res. 9(2016) 2174-2181.
    [18]
    T. Ma, H. Xu, X. Yu, H. Li, W. Zhang, X. Cheng, W. Zhu, X. Qiu, ACS Nano 13(2019) 2274-2280.
    [19]
    C. Xu, Q. Hao, D. Zhao, Nano Res. 9(2016) 908-916.
    [20]
    J. Zhu, C. Gladden, N. Liu, Y. Cui, X. Zhang, Phys. Chem. Chem. Phys. 15(2013) 440-443.
    [21]
    G. Fang, X. Deng, J. Zou, X. Zeng, Electrochim. Acta 295(2019) 498-506.
    [22]
    D.A. Agyeman, K. Song, G. Lee, M. Park, Y. Kang, Adv. Energy Mater. 6(2016) 1600904.
    [23]
    J. Yang, Y. Wang, W. Li, L. Wang, Y. Fan, W. Jiang, W. Luo, Y. Wang, B. Kong, C. Selomulya, H.K. Liu, S.X. Dou, D. Zhao, Adv. Mater. 29(2017) 1700523.
    [24]
    Z. Zhou, Y. Liu, X. Xie, X. Ye, ACS Appl. Mater. Interfaces 8(2016) 7092-7100.
    [25]
    W. Luo, Y. Wang, L. Wang, W. Jiang, S. Chou, S.X. Dou, H.K. Liu, J. Yang, ACS Nano 10(2016) 10524-10532.
    [26]
    B. Lee, J. Yoon, C. Jung, D.Y. Kim, S. Jeon, K. Kim, J. Park, H. Park, K.H. Lee, Y. Kang, J. Park, H. Jung, W. Yu, S. Doo, ACS Nano 10(2016) 2617-2627.
    [27]
    M. Wu, J. Liao, L. Yu, R. Lv, P. Li, W. Sun, R. Tan, X. Duan, L. Zhang, F. Li, J. Kim, K.H. Shin, H. Seok Park, W. Zhang, Z. Guo, H. Wang, Y. Tang, G. Gorgolis, C. Galiotis, J. Ma, Chem. Asian J. 15(2020) 995-1013.
    [28]
    Y. Dong, Y. Feng, J. Deng, P. He, J. Ma, Chin. Chem. Lett. 31(2020) 909-914.
    [29]
    J. Entwistle, A. Rennie, S. Patwardhan, J. Mater. Chem. 6(2018) 18344-18356.
    [30]
    Z. Yan, J. Guo, Nano Energy 63(2019) 103845.
    [31]
    Z. Yan, H. Jin, J. Guo, Carbon Energy 1(2019) 246-252.
    [32]
    J. Yoo, J. Kim, M. Choi, Y. Park, J. Hong, K.M. Baek, K. Kang, Y.S. Jung, Adv. Energy Mater. 4(2014) 1400622.
    [33]
    R. Fang, W. Xiao, C. Miao, P. Mei, Y. Zhang, X. Yan, Y. Jiang, Electrochim. Acta 317(2019) 575-582.
    [34]
    B. Yu, Y. Hwa, C. Park, H. Sohn, J. Mater. Chem. 1(2013) 4820-4825.
    [35]
    M. Li, Y. Yu, J. Li, B. Chen, X. Wu, Y. Tian, P. Chen, J. Mater. Chem. 3(2015) 1476-1482.
    [36]
    Y. Ren, M. Li, J. Power Sources 306(2016) 459-466.
    [37]
    M. Ge, J. Rong, X. Fang, A. Zhang, Y. Lu, C. Zhou, Nano Res. 6(2013) 174-181.
    [38]
    L. Zhang, R. Rajagopalan, H. Guo, X. Hu, S. Dou, H. Liu, Adv. Funct. Mater. 26(2016) 440-446.
    [39]
    R. Na, Y. Liu, Z. Wu, X. Cheng, Z. Shan, C. Zhong, J. Tian, Electrochim. Acta 321(2019) 134742.
    [40]
    X. Li, P. Meduri, X. Chen, W. Qi, M.H. Engelhard, W. Xu, F. Ding, J. Xiao, W. Wang, C. Wang, J. Zhang, J. Liu, J. Mater. Chem. 22(2012) 11014.
    [41]
    B. Li, R. Qi, J. Zai, F. Du, C. Xue, Y. Jin, C. Jin, Z. Ma, X. Qian, Small 12(2016) 5281-5287.
    [42]
    S. Guo, X. Hu, Y. Hou, Z. Wen, ACS Appl. Mater. Interfaces 9(2017) 42084-42092.
    [43]
    Z. Sun, S. Tao, X. Song, P. Zhang, L. Gao, J. Electrochem. Soc. 162(2015) A1530-A1536.
    [44]
    Q. Wei, G. Liu, C. Zhang, X. Hong, C. Song, Y. Yang, M. Zhang, W. Huang, Y. Cai, Electrochim. Acta 317(2019) 583-593.
    [45]
    J. Sun, J. Shi, B. Ban, J. Li, M. Wei, Q. Wang, J. Chen, Electrochim. Acta 327(2019) 134995.
    [46]
    H. Chen, S. He, X. Hou, S. Wang, F. Chen, H. Qin, Y. Xia, G. Zhou, Electrochim. Acta 312(2019) 242-250.
    [47]
    G. Mu, Z. Ding, D. Mu, B. Wu, J. Bi, L. Zhang, H. Yang, H. Wu, F. Wu, Electrochim. Acta 300(2019) 341-348.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (220) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return