Volume 6 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
Haizhen Liu, Li Xu, Yu Han, Xin Chen, Peng Sheng, Shumao Wang, Xiantun Huang, Xinhua Wang, Chenglin Lu, Hui Luo, Shixuan He, Zhiqiang Lan, Jin Guo. Development of a gaseous and solid-state hybrid system for stationary hydrogen energy storage. Green Energy&Environment, 2021, 6(4): 528-537. doi: 10.1016/j.gee.2020.06.006
Citation: Haizhen Liu, Li Xu, Yu Han, Xin Chen, Peng Sheng, Shumao Wang, Xiantun Huang, Xinhua Wang, Chenglin Lu, Hui Luo, Shixuan He, Zhiqiang Lan, Jin Guo. Development of a gaseous and solid-state hybrid system for stationary hydrogen energy storage. Green Energy&Environment, 2021, 6(4): 528-537. doi: 10.1016/j.gee.2020.06.006

Development of a gaseous and solid-state hybrid system for stationary hydrogen energy storage

doi: 10.1016/j.gee.2020.06.006
  • Hydrogen can serve as a carrier to store renewable energy in large scale. However, hydrogen storage still remains a challenge in the current stage. It is difficult to meet the technical requirements applying the conventional storage of compressed gaseous hydrogen in high-pressure tanks or the solid-state storage of hydrogen in suitable materials. In the present work, a gaseous and solid-state (G-S) hybrid hydrogen storage system with a low working pressure below 5 MPa for a 10 kW hydrogen energy storage experiment platform is developed and validated. A Ti–Mn type hydrogen storage alloy with an effective hydrogen capacity of 1.7 wt% was prepared for the G-S hybrid hydrogen storage system. The G-S hybrid hydrogen storage tank has a high volumetric hydrogen storage density of 40.07 kg H2 m-3 and stores hydrogen under pressure below 5 MPa. It can readily release enough hydrogen at a temperature as low as -15 ℃ when the FC system is not fully activated and hot water is not available. The energy storage efficiency of this G-S hybrid hydrogen storage system is calculated to be 86.4%–95.9% when it is combined with an FC system. This work provides a method on how to design a G-S hydrogen storage system based on practical demands and demonstrates that the G-S hybrid hydrogen storage is a promising method for stationary hydrogen storage application.

     

  • loading
  • [1]
    Y. Zhang, P.E. Campana, A. Lundblad, J. Yan, Appl. Energy 201(2017) 397-411.
    [2]
    D. Kroniger, R. Madlener, Appl. Energy 136(2014) 931-946.
    [3]
    K.A. Kavadias, D. Apostolou, J.K. Kaldellis, Appl. Energy (2017).
    [4]
    F. Zhang, P. Zhao, M. Niu, J. Maddy, Int. J. Hydrogen Energy 41(2016) 14535-14552.
    [5]
    X.C. Fan, W.Q. Wang, R.J. Shi, Z.J. Cheng, Renew. Sustain. Energy Rev. 72(2017) 950-960.
    [6]
    D. Ali, R. Gazey, D. Aklil, Renew. Sustain. Energy Rev. 66(2016) 27-37.
    [7]
    M. Bornapour, R.A. Hooshmand, M. Parastegari, Renew. Energy 130(2019) 1049-1066.
    [8]
    N.D. Nordin, H.A. Rahman, Renew. Energy 141(2019) 107-123.
    [9]
    C. Marino, A. Nucara, M.F. Panzera, M. Pietrafesa, V. Varano, Renew. Energy 142(2019) 316-329.
    [10]
    M.J. Hadidian Moghaddam, A. Kalam, S.A. Nowdeh, A. Ahmadi, M. Babanezhad, S. Saha, Renew. Energy 135(2019) 1412-1434.
    [11]
    A. Arsalis, A.N. Alexandrou, G.E. Georghiou, Renew. Energy 126(2018) 354-369.
    [12]
    G. Zini, P. Tartarini, Renew. Energy 35(2010) 2461-2467.
    [13]
    F. Lyu, Q. Wang, H. Zhu, M. Du, L. Wang, X. Zhang, Green Energy Environ. 2(2017) 151-159.
    [14]
    H. Zhang, H. Jiang, Y. Hu, H. Jiang, C. Li, Green Energy Environ. 2(2017) 112-118.
    [15]
    C. Ouyang, S. Feng, J. Huo, S. Wang, Green Energy Environ. 2(2017) 134-141.
    [16]
    G. Capurso, B. Schiavo, J. Jepsen, G.A. Lozano, O. Metz, T. Klassen, M. Dornheim, Adv. Sustainable Syst. 2(2018) 1800004.
    [17]
    L. Schlapbach, A. Zuttel, Nature 414(2001) 353-358.
    [18]
    J. Zheng, X. Liu, P. Xu, P. Liu, Y. Zhao, J. Yang, Int. J. Hydrogen Energy 37(2012) 1048-1057.
    [19]
    R. Von Helmolt, U. Eberle, J. Power Sources 165(2007) 833-843.
    [20]
    A. Sarkar, R. Banerjee, Int. J. Hydrogen Energy 30(2005) 867-877.
    [21]
    B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Int. J. Hydrogen Energy 32(2007) 1121-1140.
    [22]
    A. Zuttel, Naturwissenschaften 91(2004) 157-172.
    [23]
    V.A. Yartys, M. Lototskyy, V. Linkov, D. Grant, A. Stuart, J. Eriksen, R. Denys, R.C. Bowman, Appl. Phys. A 122(2016) 415.
    [24]
    P. De Rango, P. Marty, D. Fruchart, Appl. Phys. A 122(2016) 126.
    [25]
    J.C. Crivello, B. Dam, R.V. Denys, M. Dornheim, D.M. Grant, J. Huot, T.R. Jensen, P. De Jongh, M. Latroche, C. Milanese, D. Milčius, G.S. Walker, C.J. Webb, C. Zlotea, V.A. Yartys, Appl. Phys. A 122(2016) 97.
    [26]
    J.C. Crivello, R.V. Denys, M. Dornheim, M. Felderhoff, D.M. Grant, J. Huot, T.R. Jensen, P. De Jongh, M. Latroche, G.S. Walker, C.J. Webb, V.A. Yartys, Appl. Phys. A 122(2016) 85.
    [27]
    Q. Luo, J. Li, B. Li, B. Liu, H. Shao, Q. Li, J. Magnesium Alloys 7(2019) 58-71.
    [28]
    Q. Li, Y. Li, B. Liu, X. Lu, T. Zhang, Q. Gu, J. Mater. Chem. 5(2017) 17532-17543.
    [29]
    S. Nayebossadri, D. Book, Renew. Energy 143(2019) 1010-1021.
    [30]
    Y. Zhang, X. Li, Y. Cai, Y. Qi, S. Guo, D. Zhao, Renew. Energy 138(2019) 263-271.
    [31]
    S.I. Orimo, Y. Nakamori, J.R. Eliseo, A. Zuttel, C.M. Jensen, Chem. Rev. 107(2007) 4111-4132.
    [32]
    S. Garroni, A. Santoru, H.J. Cao, M. Dornheim, T. Klassen, C. Milanese, F. Gennari, C. Pistidda, Energies 11(2018).
    [33]
    E. Callini, Z.K. Atakli, B.C. Hauback, S.I. Orimo, C. Jensen, M. Dornheim, D. Grant, Y.W. Cho, P. Chen, B. Hjörvarsson, P. De Jongh, C. Weidenthaler, M. Baricco, M. Paskevicius, T.R. Jensen, M.E. Bowden, T.S. Autrey, A. Züttel, Appl. Phys. A 122(2016) 353.
    [34]
    T. Matsunaga, F. Buchter, K. Miwa, S. Towata, S. Orimo, A. Züttel, Renew. Energy 33(2008) 193-196.
    [35]
    R.H. Baughman, A.A. Zakhidov, W.A. De Heer, Science 297(2002) 787-792.
    [36]
    A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Nature 386(1997) 377-379.
    [37]
    K.E. Hurst, P.A. Parilla, K.J. O'neill, T. Gennett, Appl. Phys. A 122(2016) 42.
    [38]
    R. Naresh Muthu, S. Rajashabala, R. Kannan, Renew. Energy 85(2016) 387-394.
    [39]
    N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O'keeffe, O.M. Yaghi, Science 300(2003) 1127-1129.
    [40]
    J. Sculley, D.Q. Yuan, H.C. Zhou, Energy Environ. Sci. 4(2011) 2721-2735.
    [41]
    M. Schlichtenmayer, M. Hirscher, Appl. Phys. A 122(2016) 379.
    [42]
    D.P. Broom, C.J. Webb, K.E. Hurst, P.A. Parilla, T. Gennett, C.M. Brown, R. Zacharia, E. Tylianakis, E. Klontzas, G.E. Froudakis, T.A. Steriotis, P.N. Trikalitis, D.L. Anton, B. Hardy, D. Tamburello, C. Corgnale, B.A. Van Hassel, D. Cossement, R. Chahine, M. Hirscher, Appl. Phys. A 122(2016) 151.
    [43]
    Z. Jiang, Q. Pan, J. Xu, T. Fang, Int. J. Hydrogen Energy 39(2014) 17442-17451.
    [44]
    R.H. Crabtree, Energy Environ. Sci. 1(2008) 134-138.
    [45]
    Q.F. Zhang, E. Uchaker, S.L. Candelaria, G.Z. Cao, Chem. Soc. Rev. 42(2013) 3127-3171.
    [46]
    A. Fikrt, R. Brehmer, V.O. Milella, K. Muller, A. Bosmann, P. Preuster, N. Alt, E. Schlucker, P. Wasserscheid, W. Arlt, Appl. Energy 194(2017) 1-8.
    [47]
    M. Eypasch, M. Schimpe, A. Kanwar, T. Hartmann, S. Herzog, T. Frank, T. Hamacher, Appl. Energy 185(2017) 320-330.
    [48]
    B. Peng, J. Chen, Energy Environ. Sci. 1(2008) 479-483.
    [49]
    H.L. Jiang, Q. Xu, Catal. Today 170(2011) 56-63.
    [50]
    U.B. Demirci, Int. J. Hydrogen Energy 42(2017) 9978-10013.
    [51]
    M. Yadav, Q. Xu, Energy Environ. Sci. 5(2012) 9698-9725.
    [52]
    J. Cha, Y.S. Jo, H. Jeong, J. Han, S.W. Nam, K.H. Song, C.W. Yoon, Appl. Energy 224(2018) 194-204.
    [53]
    O. Elishav, D.R. Lewin, G.E. Shter, G.S. Grader, Appl. Energy 185(2017) 183-188.
    [54]
    A. Klerke, C.H. Christensen, J.K. Norskov, T. Vegge, J. Mater. Chem. 18(2008) 2304-2310.
    [55]
    T. Hejze, J.O. Besenhard, K. Kordesch, M. Cifrain, R.R. Aronsson, J. Power Sources 176(2008) 490-493.
    [56]
    R. Lan, J.T.S. Irvine, S.W. Tao, Int. J. Hydrogen Energy 37(2012) 1482-1494.
    [57]
    V. Guther, A. Otto, J. Alloys Compd. 293(1999) 889-892.
    [58]
    R. Hardian, C. Pistidda, A.L. Chaudhary, G. Capurso, G. Gizer, H. Cao, C. Milanese, A. Girella, A. Santoru, D. Yigit, H. Dieringa, K.U. Kainer, T. Klassen, M. Dornheim, Int. J. Hydrogen Energy 43(2018) 16738-16748.
    [59]
    M. Kölbig, I. Bürger, M. Linder, Int. J. Hydrogen Energy 44(2019) 4878-4888.
    [60]
    Usdrive. https://www.energy.gov/eere/fuelcells/doe-technical-targetsonboard-hydrogen-storage-light-duty-vehicles,2017.
    [61]
    J. Bellosta Von Colbe, J.R. Ares, J. Barale, M. Baricco, C. Buckley, G. Capurso, N. Gallandat, D.M. Grant, M.N. Guzik, I. Jacob, E.H. Jensen, T. Jensen, J. Jepsen, T. Klassen, M.V. Lototskyy, K. Manickam, A. Montone, J. Puszkiel, S. Sartori, D.A. Sheppard, A. Stuart, G. Walker, C.J. Webb, H. Yang, V. Yartys, A. Züttel, M. Dornheim, Int. J. Hydrogen Energy 44(2019) 7780-7808.
    [62]
    I. Bürger, M. Dieterich, C. Pohlmann, L. Röntzsch, M. Linder, J. Power Sources 342(2017) 970-979.
    [63]
    N. Takeichi, H. Senoh, T. Yokota, H. Tsuruta, K. Hamada, H.T. Takeshita, H. Tanaka, T. Kiyobayashi, T. Takano, N. Kuriyama, Int. J. Hydrogen Energy 28(2003) 1121-1129.
    [64]
    R.K. Ahluwalia, J.K. Peng, Int. J. Hydrogen Energy 33(2008) 4622-4633.
    [65]
    S.M. Aceves, F. Espinosa-Loza, E. Ledesma-Orozco, T.O. Ross, A.H. Weisberg, T.C. Brunner, O. Kircher, Int. J. Hydrogen Energy 35(2010) 1219-1226.
    [66]
    R.K. Ahluwalia, T.Q. Huaa, J.K. Peng, S. Lasher, K. Mckenney, J. Sinha, M. Gardiner, Int. J. Hydrogen Energy 35(2010) 4171-4184.
    [67]
    D. Mori, N. Kobayashi, T. Shinozawa, T. Matsunaga, H. Kubo, K. Toh, M. Tsuzuki, J. Jpn. Inst. Metals 69(2005) 308-311.
    [68]
    T. Matsunaga, M. Kon, K. Washio, T. Shinozawa, M. Ishikiriyama, Int. J. Hydrogen Energy 34(2009) 1458-1462.
    [69]
    Z.J. Cao, L.Z. Ouyang, H. Wang, J.W. Liu, L.X. Sun, M. Felderhoff, M. Zhu, Int. J. Hydrogen Energy 41(2016) 11242-11253.
    [70]
    O. Bernauer, Process and Apparatus for Using a Hydride-Forming Alloy to Store Hydrogen:US Patent 4,736,779[P]. 1988-4-12.
    [71]
    M. Afzal, P. Sharma, Int. J. Hydrogen Energy 43(2018) 13356-13372.
    [72]
    B.D. Macdonald, A.M. Rowe, J. Power Sources 174(2007) 282-293.
    [73]
    G. Capurso, B. Schiavo, J. Jepsen, G. Lozano, O. Metz, A. Saccone, S. De Negri, J.M. Bellosta Von Colbe, T. Klassen, M. Dornheim, Appl. Phys. A 122(2016) 236.
    [74]
    J. Ye, Z. Li, X. Guo, B. Yuan, L. Jiang, X. Liu, S. Wang, H. Yuan, X. Zhao, J. Ji, A Hydrogen Storage Tank with an Exterior Heat Transfer Structure:CN Patent CN103883874A[P]. 2014-6-25.
    [75]
    J. Ye, L. Jiang, Z. Li, X. Liu, S. Wang, X. Li, Int. J. Hydrogen Energy 35(2010) 8216-8224.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (183) PDF downloads(18) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return