Volume 6 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
Linlin Fan, Zhiqiang Shi, Qingjuan Ren, Lei Yan, Fuming Zhang, Liping Fan. Nitrogen-doped lignin based carbon microspheres as anode material for high performance sodium ion batteries. Green Energy&Environment, 2021, 6(2): 220-228. doi: 10.1016/j.gee.2020.06.005
Citation: Linlin Fan, Zhiqiang Shi, Qingjuan Ren, Lei Yan, Fuming Zhang, Liping Fan. Nitrogen-doped lignin based carbon microspheres as anode material for high performance sodium ion batteries. Green Energy&Environment, 2021, 6(2): 220-228. doi: 10.1016/j.gee.2020.06.005

Nitrogen-doped lignin based carbon microspheres as anode material for high performance sodium ion batteries

doi: 10.1016/j.gee.2020.06.005
  • Nitrogen-doped lignin-based carbon microspheres are synthesized using 3-aminophenol as a nitrogen source by the hydrothermal method. The structural change and the effect on the electrochemical properties are systematically investigated. Nitrogen-doped lignin-based carbon microspheres represent well-developed spherical morphology with many active sites, ultramicroporous (< 0.7 nm) structure, and large interlayer spacing. Consistent with the obtained physical structures and properties, the nitrogen-doped carbon microspheres exhibit fast sodium ion adsorption/intercalation kinetic process and excellent electrochemical performance. For example, a reversible specific capacity of 374 mAh g−1 at 25 mA g−1 with high initial coulombic efficiency of 85% and high capacitance retention of 90% after 300 cycles at 100 mA g−1 and stable charge/discharge behavior at different current density is obtained. The additional defects and abundant ultramicroporous structure can enhance sloping capacity, and large interlayer spacing is considered to be the reason for improving plateau capacity.

     

  • loading
  • [1]
    Y. Li, Y. Hu, M. M Titirici, L. Chen, X. Huang, Adv. Energy Mater. 6 (2016) 1600659.
    [2]
    J. Mao, T. Zhou, Y. Zheng, H. Gao, H. Liu, Z. Guo, J. Mater. Chem. A 6 (2018) 3284-3303.
    [3]
    S. Alvin, D. Yoon, C. Chandra, H. Cahyadi, J. Park, W. Chang, K. Chung, J. Kim, Carbon 145 (2019) 67-81.
    [4]
    Y. Sun, S. Guo, H. Zhou, Adv. Energy Mater. 9 (2019) 1800212.
    [5]
    H. Hou, C. Banks, M. Jing, Y. Zhang, X. Ji, Adv. Mater. 27 (2015) 7861-7866.
    [6]
    H. Moriwake, A. Kuwabara, A.; C. Fisher, Y. Ikuhara, RSC Adv. 7 (2017) 36550-36554.
    [7]
    Y. Liu, B. Merinov, W. Goddard, Proc. Natl. Acad. Sci. USA. 113 (2016) 3735-3739.
    [8]
    K. Nobuhara, H. Nakayama, M. Nose, S. Nakanishi, H. Iba, J. Power Sources 243 (2013) 585-587.
    [9]
    N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev. 114 (2014) 11636-11682.
    [10]
    Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, C. Wang, Nat. Commun. 5 (2014) 4033-4042.
    [11]
    Y. Liu, N. Zhang, L. Jiao, Z. Tao, J. Chen, Adv. Funct. Mater. 25 (2015) 214-220.
    [12]
    K. Kim, G. Ali, K. Chung, C. Yoon, H. Yashiro, Y. Sun, J. Lu, K. Amine, S. Myung, Nano Lett. 14 (2014) 416-422.
    [13]
    H. Banda, D. Damien, K. Nagarajan, M. Hariharan, M. M. Shaijumon, J. Mater. Chem. A 3 (2015) 10453-10458.
    [14]
    H. Zhao, Q. Wang, Y. Deng, Q. Shi, Y. Qian, B. Wang, L. Lu, X. Qiu, RSC Adv. 6 (2016) 77143-77150.
    [15]
    W. Li, M. Li, K. R. Adair, X. Sun, Y. Yu, J. Mater. Chem. A 5 (2017) 13882-13906.
    [16]
    W. Luo, C. Bommier, Z. Jian, X. Li, R. Carter, S. Vail, Y. Lu, J. J. Lee, X. Ji, ACS Appl. Mater. Interfaces 7 (2015) 2626-2631.
    [17]
    X. Zhou, Y. Guo, ChemElectroChem 1 (2014) 83-86.
    [18]
    M. Kumar, A. Olajire Oyedun, A. Kumar, Renewable and Sustainable Energy Rev. 81 (2018) 1742-1770.
    [19]
    H. Wikberg, T. Ohra-aho, F. Pileidis, M. M. Titirici, ACS Sustainable Chem. Eng. 3 (2015) 2737-2745.
    [20]
    B. Hu, K. Wang, L. Wu, S. Yu, M. Antonietti, M. M. Titirici, Adv. Mater. 22 (2010) 813-828.
    [21]
    H. Zhang, M. Hu, Q. Lv, L. Yang, R. Lv, Electrochimica Acta. 297 (2019) 365-371.
    [22]
    C. Zhou, D. Wang, A. Li, E. Pan, H. Liu, X. Chen, M. Jia, H. Song, Chem. Eng. J. 380 (2020) 122457.
    [23]
    J. Ye, H. Zhao, W. Song, N. Wang, M. Kang, Z. Li, J. Power Sources 412 (2019) 606-614.
    [24]
    Y. Zhao, F. Wang, C. Wang, S. Wang, C. Wang, Z. Zhao, L. Duan, Y. Liu, Y. Wu, W. Li, D. Zhao, Nano Energy 56 (2019) 426-433.
    [25]
    Y. Li, Y. Yuan, Y. Bai, Y. Liu, Z. Wang, L. Li, F. Wu, K. Amine, C. Wu, J. Lu, Adv. Energy Mater. 8 (2018) 1702781.
    [26]
    T. Wu, C. Zhang, G. Zou, J. Hu, L. Zhu, X. Cao, H. Hou, X. Ji, Science China Mater. 62 (2019) 1127-1138.
    [27]
    J. Jin, B. Yu, Z. Shi, C. Wang, C. Chong, J. Power Sources 272 (2014) 800-807.
    [28]
    P. Figueiredo, K. Lintinen, J. T. Hirvonen, M. A. Kostiainen, H. A. Santos, Prog. Mater. Sci. 93 (2018) 233-269.
    [29]
    H. Zhang, W. Zhang, H. Ming, J. Pang, H. Zhang, G. Cao, Y. Yang, Chem. Eng. J. 341 (2018) 280-288.
    [30]
    W. E. Tenhaeff, O. Rios, K. More, M. A. McGuire, Adv. Funct. Mater. 24 (2014) 86-94.
    [31]
    D. Bin, Z. Chi, Y. Li, K. Zhang, X. Yang, Y. Sun, J. Piao, A. Cao, L. Wan, J. Am. Chem. Soc. 139 (2017) 13492-13498.
    [32]
    Z. Chang, B. Yu, C. Wang, Electrochim. Acta 176 (2015) 1352-1357.
    [33]
    Y. Zhu, M. Chen, Q. Li, C. Yuan, C. Wang, Carbon 129 (2018) 695-701.
    [34]
    Y. Yun, K. Y. Park, B. Lee, S. Cho, Y. U. Park, S. Hong, B. H. Kim, H. Gwon, H. Kim, S. Lee, Y. W. Park, H. Jin, K. Kang, Adv. Mater. 27 (2015) 6914-6921.
    [35]
    D. Bin, Y. Li, Y. Sun, S. Duan, Y. Lu, J. Ma, A. Cao, Y. Hu, L. Wan, Adv. Energy Mater. 8 (2018) 1800855.
    [36]
    C. Chen, G. Li, J. Zhu, Y. Lu, M. Jiang, Y. Hu, Z. Shen, X. Zhang, Carbon 120 (2017) 380-391.
    [37]
    L. Ma, R. Chen, Y. Hu, G. Zhu, T. Chen, H. Lu, J. Liang, Z. Tie, Z. Jin, J. Liu, Nanoscale 8 (2016) 17911-17918.
    [38]
    H. Liu, M. Jia, B. Cao, R. Chen, X. Lv, R. Tang, F. Wu, B. Xu, J. Power Sources 319 (2016) 195-201.
    [39]
    W. Shen, C. Wang, Q. Xu, H. Liu, Y. Wang, Adv. Energy Mater. 5 (2015) 1400982.
    [40]
    M. Hu, H. Zhou, X. Gan, L. Yang, Z. Huang, D. Wang, F. Kang, R. Lv, J. Mater. Chem. A 6 (2018) 1582-1589.
    [41]
    L. Fan, B. Lu, Small 12 (2016) 2783-2791.
    [42]
    A. J. Barlow, S. Popescu, K. Artyushkova, O. Scott, N. Sano, J.Hedley, P. J. Cumpson, Carbon 107 (2016) 190-197.
    [43]
    L. Wang, C. Yang, S. Dou, S. Wang, J. Zhang, X. Gao, J. Ma, Y. Yu, Electrochim. Acta 219 (2016) 592-603.
    [44]
    C. Bommier, T. W. Surta, M. Dolgos, X. Ji, Nano Lett. 15 (2015) 5888-5892.
    [45]
    Y. Cao, L. Xiao, M. L. Sushko, W. Wang, B. Schwenzer, J. Xiao, Z. Nie, L. V. Saraf, Z. Yang, J. Liu, Nano Lett. 12 (2012) 3783-3787.
    [46]
    A. Cuesta, P. Dhamelincourt, J. Laureyns, A. Martinez-Alonso, J. M. D. Tascon, Carbon 32 (1994) 1523-1532.
    [47]
    A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Poschl, Carbon 43 (2005) 1731-1742.
    [48]
    J. D. Wilcox, M. M. Doeff, M. Marcinek, R. Kostecki, J. Electrochem. Soc. 154 (2007) A389-A395.
    [49]
    J. W. Jeon, R. Sharma, P. Meduri, B. W. Arey, H. T. Schaef, J. L. Lutkenhaus, J. P. Lemmon, P. K. Thallapally, M. I. Nandasiri, B. P. McGrail, S. K. Nune, ACS Appl. Mater. Interfaces 6 (2014) 7214-7222.
    [50]
    J. W. Jeon, L. Zhang, J. L. Lutkenhaus, D. D. Laskar, J. P. Lemmon, D. Choi, P. B. McGrail, B. Yang, S. K. Nune, ChemSusChem 8 (2015) 428-432.
    [51]
    D. Zhang, W. Sun, Y. Zhang, Y. Dou, Y. Jiang, S. Dou, Adv. Funct. Mater. 26 (2016) 7479-7485.
    [52]
    T. Liu, L. Zhang, B. Cheng, J. Yu, Adv. Energy Mater. 9 (2019) 1803900.
    [53]
    K. A. Cychosz, R. Guillet-Nicolas, J. Garcia-Martinez, M. Thommes, Chem. Soc. Rev. 46 (2017) 389-414.
    [54]
    C. Matei Ghimbeu, J. Gorka, V. Simone, L. Simonin, S. Martinet, C. Vix-Guterl, Nano Energy 44 (2018) 327-335.
    [55]
    E. Peled, S. Menkin, J. Electrochem. Soc. 164 (2017) A1703-A1719.
    [56]
    Z. Li, C. Bommier, Z. Chong, Z. Jian, T. Surta, X. Wang, Z. Xing, J. Neuefeind, W. Stickle, M. Dolgos, P. Greaney, X. Ji, Adv. Energy Mater. 7 (2017) 1602894.
    [57]
    S. Qiu, L. Xiao, M. Sushko, K. Han, Y. Shao, M. Yan, X. Liang, L. Mai, J. Feng, Y. Cao, X. Ai, H. Yang, J. Liu, Adv. Energy Mater. 7 (2017) 1700403.
    [58]
    W. Hong, Y. Zhang, L. Yang, Y. Tian, P. Ge, J. Hu, W. Wei, G. Zou, H. Hou, X. Ji, Nano Energy 65 (2019) 104038.
    [59]
    M. Hao, N. Xiao, Y. Wang, H. Li, Y. Zhou, C. Liu, J. Qiu, Fuel Process. Technol. 177 (2018) 328-335.
    [60]
    J. Xu, M. Wang, N. P. Wickramaratne, M. Jaroniec, S. Dou, L. Dai, Adv. Mater. 27 (2015) 2042-2048.
    [61]
    T. Yang, T. Qian, M. Wang, X. Shen, N. Xu, Z. Sun, C. Yan, Adv. Mater. 28 (2016) 539-545.
    [62]
    S. Zhang, W. Lv, C. Luo, C. You, J. Zhang, Z. Pan, F. Kang, Q. Yang, Energy Storage Mater. 3 (2016) 18-23.
    [63]
    X. Cheng, Q. Zhang, H. Wang, G. Tian, J. Huang, H. Peng, M. Zhao, F. Wei, Catal. Today 249 (2015) 244-251.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (250) PDF downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return