Volume 6 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
Hongtai Li, Yanxiao Chen, Quan Jin, Wei Xiang, Benhe Zhong, Xiaodong Guo, Bao Wang. Fe-Nx Sites enriched microporous carbon nanoflower planted with tangled bamboo-like carbon nanotube as a strong polysulfides anchor for lithium–sulfur batteries. Green Energy&Environment, 2021, 6(4): 506-516. doi: 10.1016/j.gee.2020.06.004
Citation: Hongtai Li, Yanxiao Chen, Quan Jin, Wei Xiang, Benhe Zhong, Xiaodong Guo, Bao Wang. Fe-Nx Sites enriched microporous carbon nanoflower planted with tangled bamboo-like carbon nanotube as a strong polysulfides anchor for lithium–sulfur batteries. Green Energy&Environment, 2021, 6(4): 506-516. doi: 10.1016/j.gee.2020.06.004

Fe-Nx Sites enriched microporous carbon nanoflower planted with tangled bamboo-like carbon nanotube as a strong polysulfides anchor for lithium–sulfur batteries

doi: 10.1016/j.gee.2020.06.004
  • Serious shuttle effect and sluggish conversion kinetics of lithium polysulfides (LiPSs) have a massive impact on obstructing the practical application of lithium-sulfur (Li–S) batteries. To address such issues, Fe-Nx sites enriched microporous nanoflowers planted with tangled bamboo-like carbon nanotubes (Fe-Nx-C/Fe3C-CNTs NFs) are found to be effective catalytic mediators with strong anchoring capabilities for LiPSs. The bamboo-like carbon nanotubes catalyzed by Fe3C/Fe entangled each other to form a conductive network, which encloses a flower-like microporous carbon core with embedded well-dispersed Fe-Nx active sites. As expected, electrons smoothly transfer along the dense conductive bamboo-like carbon network while the flower-like carbon core consisting of micropores induces the homogeneous distribution of tiny sulfur and favors the lithium ions migration with all directions. Meanwhile, Fe-Nx sites strongly trap long-chain LiPSs with chemical anchoring, and catalyze the redox conversion of LiPSs. Due to the aforementioned synergistic effects, the S@Fe-Nx-C/Fe3C-CNTs NFs cathode exhibited a remarkable specific capacity (635 mAh ${\rm{g}}_{\rm{s}}^{{\rm{ - 1}}}$) at 3 C and a favorable capacity decay with 0.04% per cycle even after 400 cycles at 1 C.

     

  • loading
  • [1]
    H. Yuan, H.J. Peng, J.Q. Huang, Q. Zhang, Adv. Mater. Interfaces 6(2019) 1802046.
    [2]
    X.L. Ji, L.F. Nazar, J. Mater. Chem. 20(2010) 9821-9826.
    [3]
    G.M. Zhou, L. Xu, G.W. Hu, L.Q. Mai, Y. Cui, Chem. Rev. 119(2019) 11042-11109.
    [4]
    D. Herbert, J. Ulam, US Patent (1962) 3043896.
    [5]
    C. Deng, Z.W. Wang, S.P. Wang, J.X. Yu, J. Mater. Chem. A 7(2019) 12381-12413.
    [6]
    G.M. Zhou, S.Y. Zhao, T.S. Wang, S.Z. Yang, B. Johannessen, H. Chen, C.W. Liu, Y.S. Ye, Y.C. Wu, Y.C. Peng, C. Liu, S.P. Jiang, Q.F. Zhang, Y. Cui, Nano Lett. 20(2019) 1252-1261.
    [7]
    G.M. Zhou, K. Liu, Y.C. Fan, M.Q. Yuan, B.F. Liu, W. Liu, F.F. Shi, Y.Y. Liu, W. Chen, J. Lopez, D. Zhuo, Y.C. Tsao, X.Y. Huang, Q.F. Zhang, Y. Cui, ACS Cent. Sci. 4(2018) 260-267.
    [8]
    D.H. Liu, C. Zhang, G.M. Zhou, W. Lv, G.W. Ling, L.J. Zhi, Q.H. Yang, Adv. Sci. 5(2018) 1700270.
    [9]
    Z. Yuan, H.J. Peng, T.Z. Hou, J.Q. Huang, C.M. Chen, D.W. Wang, X.B. Cheng, F. Wei, Q. Zhang, Nano Lett. 16(2016) 519-527.
    [10]
    H. Yang, Y.N. Yang, X. Zhang, Y.P. Li, N.A. Qaisrani, F.X. Zhang, C. Hao, ACS Appl. Mater. Interfaces 11(2019) 31860-31868.
    [11]
    L. Zhang, P. Liang, X.L. Man, D. Wang, J. Huang, H.B. Shu, Z.G. Liu, L. Wang, J. Phys. Chem. Solid. 126(2019) 280-286.
    [12]
    Y.Z. Wang, D. Adekoya, J.Q. Sun, T.Y. Tang, H.L. Qiu, L. Xu, S.Q. Zhang, Y.L. Hou, Adv. Funct. Mater. 29(2018) 1807485.
    [13]
    H.Y. Pan, Z. Tan, H.H. Zhou, L.L. Jiang, Z. Huang, Q.X. Feng, Q. Zhou, S. Ma, Y.F. Kuang, J. Energy Chem. 39(2019) 101-108.
    [14]
    W. Li, W. Ding, Y. Nie, Q. He, J.X. Jiang, Z.D. Wei, ACS Appl. Mater. Interfaces 11(2019) 22290-22296.
    [15]
    J.C. Zhang, Y. Wang, K.S. Xiao, S. Cheng, T.C. Zhang, G. Qian, Q. Zhang, Y. Feng, New J. Chem. 42(2018) 6719-6726.
    [16]
    R.Z. Chen, J.F. Yao, Q.F. Gu, S. Smeets, C. Baerlocher, H.X. Gu, D.R. Zhu, W. Morris, O.M. Yaghi, H.T. Wang, Chem. Commun. 49(2013) 9500-9502.
    [17]
    S.K. Wu, X.P. Shen, G.X. Zhu, E. Zhou, Z.Y. Ji, L.B. Ma, K.Q. Xu, J. Yang, A.H. Yuan, Carbon 116(2017) 68-76.
    [18]
    M.M. Zhen, X.T. Zuo, J. Wang, C. Wang, Nano Res. 12(2019) 1017-1024.
    [19]
    W.J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L.J. Zhang, J.Q. Wang, J.S. Hu, Z. Wei, L.J. Wan, J. Am. Chem. Soc. 138(2016) 3570-3578.
    [20]
    T.Y. Yan, J. Wang, Q.L. Wu, S.Q. Huo, H.J. Duan, J. Mater. Sci. Mater. Electron. 30(2019) 12012-12022.
    [21]
    Y.L. Tan, K. Zhu, D. Li, F. Bai, Y.J. Wei, P. Zhang, Chem. Eng. J. 258(2014) 93-100.
    [22]
    Y. Hou, T.Z. Huang, Z.H. Wen, S. Mao, S.M. Cui, J.H. Chen, Adv. Energy Mater. 4(2014) 1400337.
    [23]
    J.C. Zhang, T.C. Zhang, D.B. Yu, K.S. Xiao, Y. Hong, CrystEngComm 17(2015) 8212-8215.
    [24]
    Q.X. Lai, L.R. Zheng, Y.Y. Liang, J.P. He, J.X. Zhao, J.H. Chen, ACS Catal. 7(2017) 1655-1663.
    [25]
    X.M. Zhang, Y. Liu, Y. Jiao, Q.H. Gao, P. Wang, Y. Yang, Microporous Mesoporous Mater. 277(2019) 52-59.
    [26]
    Q.Q. Wang, X.P. Zhang, L. Huang, Z.Q. Zhang, S.J. Dong, Angew. Chem. Int. Ed. 56(2017) 16082-16085.
    [27]
    G. Zheng, Z. Chen, K. Sentosun, I. Perez-Juste, S. Bals, L.M. LizMarzan, I. Pastoriza-Santos, J. Perez-Juste, M. Hong, Nanoscale 9(2017) 16645-16651.
    [28]
    Y. Zhong, X.H. Xia, S.J. Deng, J.Y. Zhan, R.Y. Fang, Y. Xia, X.L. Wang, Q. Zhang, J.P. Tu, Adv. Energy Mater. 8(2018) 1701110.
    [29]
    Q.X. Lai, Y.X. Zhao, Y.Y. Liang, J.P. He, J.H. Chen, Adv. Funct. Mater. 26(2016) 8334-8344.
    [30]
    S.Q. Luo, C.M. Zheng, W.W. Sun, Y.Q. Wang, J.H. Ke, Q.P. Guo, S.K. Liu, X.B. Hong, Y.J. Li, W. Xie, Electrochim. Acta 289(2018) 94-103.
    [31]
    J.X. Han, X.Y. Meng, L. Lu, J.J. Bian, Z.P. Li, C.W. Sun, Adv. Funct. Mater. 29(2019) 1808872.
    [32]
    S.K. Park, J.S. Park, Y.C. Kang, ACS Appl. Mater. Interfaces 10(2018) 16531-16540.
    [33]
    H. Yang, Y.N. Yang, X. Zhang, Y.P. Li, N.A. Qaisrani, F.X. Zhang, C. Hao, ACS Appl. Mater. Interfaces 11(2019) 31860-31868.
    [34]
    Z.Z. Liu, L. Zhou, Q. Ge, R.J. Chen, M. Ni, W. Utetiwabo, X.L. Zhang, W. Yang, ACS Appl. Mater. Interfaces 10(2018) 19311-19317.
    [35]
    P.H. Ji, B. Shang, Q.M. Peng, X.B. Hu, J.W. Wei, J. Power Sources 400(2018) 572-579.
    [36]
    S.K. Park, J.K. Lee, Y.C. Kang, Adv. Funct. Mater. 28(2018) 1705264.
    [37]
    L. Luo, S.H. Chung, A. Manthiram, Adv. Energy Mater. 8(2018) 1801014.
    [38]
    J. Conder, R. Bouchet, S. Trabesinger, C. Marino, L. Gubler, C. Villevieille, Nat. Energy 2(2017) 17069.
    [39]
    P. Yu, L. Wang, F.F. Sun, Y. Xie, X. Liu, J.Y. Ma, X.W. Wang, C.G. Tian, J.H. Li, H.G. Fu, Adv. Mater. 31(2019) 1901666.
    [40]
    X. Yang, X. Gao, Q. Sun, S.P. Jand, Y. Yu, Y. Zhao, X. Li, K. Adair, L.Y. Kuo, J. Rohrer, J. Liang, X. Lin, M.N. Banis, Y. Hu, H. Zhang, X. Li, R. Li, H. Zhang, P. Kaghazchi, T.K. Sham, X. Sun, Adv. Mater. 31(2019) 1901220.
    [41]
    G.M. Zhou, H.Z. Tian, Y. Jin, X.Y. Tao, B.F. Liu, R.F. Zhang, Z.W. Seh, D. Zhuo, Y.Y. Liu, J. Sun, j. Zhao, C.X. Zu, S.C. Wu, Q.F. Zhang, Y. Cui, Proc. Natl. Acad. Sci. 114(2017) 840-845.
    [42]
    S.H. Shen, X.H. Xia, Y. Zhong, S.J. Deng, D. Xie, B. Liu, Y. Zhang, G.X. Pan, X.L. Wang, J.P. Tu, Adv. Mater. 31(2019) 1900009.
    [43]
    S.B. Tu, X. Chen, X.X. Zhao, M.R. Cheng, P.X. Xiong, Y.W. He, Q. Zhang, Y.H. Xu, Adv. Mater. 30(2018) 1804581.
    [44]
    F. Zhou, Z. Li, X. Luo, T. Wu, B. Jiang, L.L. Lu, H.B. Yao, M. Antonietti, S.H. Yu, Nano Lett. 18(2018) 1035-1043.
    [45]
    Y.H. He, S. Hwang, D.A. Cullen, M.A. Uddin, L. Langhorst, B.Y. Li, S. Karakalos, A.J. Kropf, E.C. Wegener, J. Sokolowski, M.J. Chen, D. Myers, D. Su, K.L. More, G.F. Wang, S. Litster, G. Wu, Energy Environ. Sci. 12(2019) 250-260.
    [46]
    Q.T. Liu, X.F. Liu, L.R. Zheng, J.L. Shui, Angew. Chem. Int. Ed. 57(2018) 1204-1208.
    [47]
    J. Yang, H.C. Gao, S. Men, Z.Q. Shi, Z. Lin, X.W. Kang, S.W. Chen, Adv. Sci. 5(2018) 1800763.
    [48]
    D. Luo, G. Li, Y.P. Deng, Z. Zhang, J. Li, R. Liang, M. Li, Y. Jiang, W. Zhang, Y. Liu, W. Lei, A. Yu, Z. Chen, Adv. Energy Mater. 9(2019) 1900228.
    [49]
    Z.L. Xu, S. Lin, N. Onofrio, L. Zhou, F. Shi, W. Lu, K. Kang, Q. Zhang, S.P. Lau, Nat. Commun. 9(2018) 4164.
    [50]
    D.S. Wu, F. Shi, G. Zhou, C. Zu, C. Liu, K. Liu, Y. Liu, J. Wang, Y. Peng, Y. Cui, Energy Storage Mater. 13(2018) 241-246.
    [51]
    H.J. Peng, Z.W. Zhang, J.Q. Huang, G. Zhang, J. Xie, W.T. Xu, J.L. Shi, X. Chen, X.B. Cheng, Q. Zhang, Adv. Mater. 28(2016) 9551-9558.
    [52]
    Y.T. Liu, D.D. Han, L. Wang, G.R. Li, S. Liu, X.P. Gao, Adv. Energy Mater. 9(2019) 1803477.
    [53]
    Y.B. He, Y. Qiao, Z. Chang, X. Cao, M. Jia, P. He, H.S. Zhou, Angew. Chem. Int. Ed. 58(2019) 11774-11778.
    [54]
    H. Zhang, L.G. Wang, Q. Li, L. Ma, T.P. Wu, Y.L. Ma, J.J. Wang, C.Y. Du, G.P. Yin, P.J. Zuo, Carbon 140(2018) 385-393.
    [55]
    L.L. Zhang, X. Chen, F. Wan, Z.Q. Niu, Y.J. Wang, Q. Zhang, J. Chen, ACS Nano 12(2018) 9578-9586.
    [56]
    Z.H. Sun, X.L. Wu, Z.Q. Peng, J.W. Wang, S.Y. Gan, Y.W. Zhang, D.X. Han, L. Niu, Small 15(2019) 1902491.
    [57]
    L. Kong, X. Chen, B.Q. Li, H.J. Peng, J.Q. Huang, J. Xie, Q. Zhang, Adv. Mater. 30(2018) 1705219.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (79) PDF downloads(18) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return