Citation: | Ye Song, Bo Peng, Xue Yang, Qiuqiao Jiang, Jun Liu, Wei Lin. Trail of sulfur during the desulfurization via reactive adsorption on Ni/ZnO. Green Energy&Environment, 2021, 6(4): 597-606. doi: 10.1016/j.gee.2020.05.010 |
The reactive adsorption behavior of thiophene on the reduced Ni/ZnO sample was investigated by a combination of theoretical and experimental study. It is widely accepted that Ni is responsible for the sulfur-removal of thiophene to release S-free hydrocarbons. Such surface reaction was simulated by DFT method. It is demonstrated that thiophene is mainly adsorbed as π-complexation mode over metallic Ni. During desulfurization, the Ssingle bondNi bond is formed and the Csingle bondS bond is thus split without pre-hydrogenation, resulting in the formation of Ni3S2 phase and S-free C4 olefin which can be further saturated in the presence of H2. The S-transfer between Ni3S2 and ZnO was monitored by in-situ XRD and STEM with EDS mapping. Two essential features were identified for efficient S-transfer, namely, 1) the H2 atmosphere, and 2) the two phases are presented with close contact. Based on the acquired information, a general scenario of sulfur trail has been proposed for the desulfurization of thiophene on Ni/ZnO.
[1] |
M. Tang, L. Zhou, M. Du, Z. Lyu, X. Wen, X. Li, H. Ge, Catal. Commun. 61(2015) 37-40.
|
[2] |
Y. Zheng, W. Zhou, Y. Liu, C. Zhang, S. Chu, Y. Liu, Mol. Catal. 485(2020) 110803.
|
[3] |
L. van Haandel, E. Hensen, T. Weber, Catal. Today 292(2017) 51-57.
|
[4] |
J. Lee, A. Ishihara, F. Dumeignil, E.W. Qian, T. Kabe, J. Mol. Catal. Chem. 213(2004) 207-215.
|
[5] |
O.V. Klimov, A.V. Pashigreva, M.A. Fedotov, D.I. Kochubey, Y.A. Chesalov, G.A. Bukhtiyarova, A.S. Noskov, J. Mol. Catal. Chem. 322(2010) 80-89.
|
[6] |
R. Prins, V. De Beer, G.A. Somorjai, Catal. Rev.-Sci. Eng. 31(1989) 1-41.
|
[7] |
I.V. Babich, J.A. Moulijn, Fuel 82(2003) 607-631.
|
[8] |
U.T. Turaga, C. Song, Catal. Today 86(2003) 129-140.
|
[9] |
X. Ma, L. Sun, C. Song, Catal. Today 77(2002) 107-116.
|
[10] |
Q. Jia, J. He, P. Wu, J. Luo, Y. Wei, H. Li, S. Xun, W. Zhu, H. Li, Mol. Catal. 468(2019) 100-108.
|
[11] |
X. Meng, H. Huang, L. Shi, Ind. Eng. Chem. Res. 52(2013) 6092-6100.
|
[12] |
J. Fan, G. Wang, Y. Sun, C. Xu, H. Zhou, G. Zhou, J. Gao, Ind. Eng. Chem. Res. 49(2010) 8450-8460.
|
[13] |
C. Song, Catal. Today 86(2003) 211-263.
|
[14] |
F. Yu, C. Liu, B. Yuan, P. Xie, C. Xie, S. Yu, Fuel 177(2016) 39-45.
|
[15] |
A. Jess, P. Wasserscheid, J. Esser, Chem. Ing. Tech. 76(2004) 1407-1408.
|
[16] |
A.A. Nuhu, Rev. Environ. Sci. Biotechnol. 12(2013) 9-23.
|
[17] |
L. Qiu, K. Zou, G. Xu, Appl. Surf. Sci. 266(2013) 230-234.
|
[18] |
K. Tawara, T. Nishimura, H. Iwanami, Sekiyu Gakkaishi, J. Jpn. Pet. Inst. 43(2020) 114-120.
|
[19] |
W. Lin, L. Wang, H. Tian, Pet. Process. Petrochem. 42(2011) 1-4.
|
[20] |
L. Qiu, K. Zou, G. Xu, Appl. Surf. Sci. 266(2013) 230-234.
|
[21] |
I. Bezverkhyy, G. Gadacz, J. Bellat, Mater. Chem. Phys. 114(2009) 897-901.
|
[22] |
I. Bezverkhyy, A. Ryzhikov, G. Gadacz, J. Bellat, Catal. Today 130(2008) 199-205.
|
[23] |
I. Bezverkhyy, O.V. Safonova, P. Afanasiev, J. Bellat, J. Phys. Chem. C 113(2009) 17064-17069.
|
[24] |
A. Ryzhikov, I. Bezverkhyy, J. Bellat, Appl. Catal. B 84(2008) 766-772.
|
[25] |
R.J. Angelici, Soc. Chim. Belg. 104(1995) 265-282.
|
[26] |
F. Mittendorfer, A. Eichler, J. Hafner, Surf. Sci. 423(1999) 1-11.
|
[27] |
F. Mittendorfer, J. Hafner, Surf. Sci. 492(2001) 27-33.
|
[28] |
F. Mittendorfer, J. Hafner, J. Catal. 214(2003) 234-241.
|
[29] |
L. Wang, L. Zhao, C. Xu, Y. Wang, J. Gao, Appl. Surf. Sci. 399(2017) 440-450.
|
[30] |
T. Weber, J.A. Rob Van Veen, Today Off. 130(2008) 170-177.
|
[31] |
E. Krebs, B. Silvi, A. Daudin, P. Raybaud, J. Catal. 260(2008) 276-287.
|
[32] |
A. Aguirre-Gutiérrez, J.A.M. de la Fuente, J.A. de Los Reyes, P. Del Angel, A. Vargas, J. Mol. Catal. Chem. 346(2011) 12-19.
|
[33] |
B.M. Vogelaar, N. Kagami, T.F. van der Zijden, A.D. van Langeveld, S. Eijsbouts, J.A. Moulijn, J. Mol. Catal. Chem. 309(2009) 79-88.
|
[34] |
K. Sakanishi, T. Nagamatsu, I. Mochida, D.D. Whitehurst, J. Mol. Catal. Chem. 155(2000) 101-109.
|
[35] |
H. Farag, K. Sakanishi, M. Kouzu, A. Matsumura, Y. Sugimoto, I. Saito, J. Mol. Catal. Chem. 206(2003) 399-408.
|
[36] |
Y. Zhang, Y. Yang, H. Han, M. Yang, L. Wang, Y. Zhang, Z. Jiang, C. Li, Appl. Catal. B 119-120(2012) 13-19.
|
[37] |
S. Zhang, Y. Zhang, S. Huang, P. Wang, H. Tian, Appl. Surf. Sci. 258(2012) 10148-10153.
|
[38] |
J.P. Perdew, W. Yue, Phys. Rev. B 33(1986) 8800.
|
[39] |
A. Imanishi, S. Yagi, T. Yokoyama, Y. Kitajima, T. Ohta, J. Electron Spectrosc. 80(1996) 151-154.
|
[40] |
T. Ohta, Surface Phys. Rev. B:Condens. Matter. 208(1995) 427-430.
|
[41] |
A. Imanishi, S. Yagi, T. Yokoyama, Y. Kitajima, T. Ohta, J. Electron Spectrosc. 80(1996) 151-154.
|
[42] |
D.R. Huntley, D.R. Mullins, M.P. Wingeier, J. Phys. Chem. 100(1996) 19620-19627.
|
[43] |
N.A. Khan, H.H. Hwu, J.G. Chen, J. Catal. 205(2002) 259-265.
|
[44] |
B.C. Wiegand, C.M. Friend, Chem. Rev. 92(1992) 491-504.
|
[45] |
L. Huang, G. Wang, Z. Qin, M. Du, M. Dong, H. Ge, Z. Wu, Y. Zhao, C. Ma, T. Hu, Catal. Commun. 11(2010) 592-596.
|
[46] |
L. Huang, G. Wang, Z. Qin, M. Dong, M. Du, H. Ge, X. Li, Y. Zhao, J. Zhang, T. Hu, J. Wang, Appl. Catal. B 106(2011) 26-38.
|
[47] |
D. Mackie, A. McClure, A. DiLabio, J. Phys. Chem. A 113(2009) 5476-5484.
|