Volume 6 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
Guang Liu, Yun Wu, Rui Yao, Fei Zhao, Qiang Zhao, Jinping Li. Amorphous iron-nickel phosphide nanocone arrays as efficient bifunctional electrodes for overall water splitting. Green Energy&Environment, 2021, 6(4): 496-505. doi: 10.1016/j.gee.2020.05.009
Citation: Guang Liu, Yun Wu, Rui Yao, Fei Zhao, Qiang Zhao, Jinping Li. Amorphous iron-nickel phosphide nanocone arrays as efficient bifunctional electrodes for overall water splitting. Green Energy&Environment, 2021, 6(4): 496-505. doi: 10.1016/j.gee.2020.05.009

Amorphous iron-nickel phosphide nanocone arrays as efficient bifunctional electrodes for overall water splitting

doi: 10.1016/j.gee.2020.05.009
  • The synthesis of low-cost and highly active electrodes for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is very important for water splitting. In this work, the novel amorphous iron-nickel phosphide (FeP-Ni) nanocone arrays as efficient bifunctional electrodes for overall water splitting have been in-situ assembled on conductive three-dimensional (3D) Ni foam via a facile and mild liquid deposition process. It is found that the FeP-Ni electrode demonstrates highly efficient electrocatalytic performance toward overall water splitting. In 1 M KOH electrolyte, the optimal FeP-Ni electrode drives a current density of 10 mA cm-2 at overpotential of 218 mV for the OER and 120 mV for the HER, and can attain such current density for 25 h without performance regression. Moreover, a two-electrode electrolyzer comprising the FeP-Ni electrodes can afford 10 mA cm-2 electrolysis current at a low cell voltage of 1.62 V and maintain long-term stability, as well as superior to that of the coupled RuO2/NF‖Pt/C/NF cell. Detailed characterizations confirm that the excellent electrocatalytic performances for water splitting are attributed to the unique 3D morphology of nanocone arrays, which could expose more surface active sites, facilitate electrolyte diffusion, and benefit charge transfer and also favorable bubble detachment behavior. Our work presents a facile and cost-effective pathway to design and develop active self-supported electrodes with novel 3D morphology for water electrolysis.

     

  • loading
  • [1]
    I. Roger, M.A. Shipman, M.D. Symes, Nat. Rev. Chem. 1(2017), 0003.
    [2]
    B. You, Y. Sun, Acc. Chem. Res. 51(2018) 1571-1580.
    [3]
    Y. Peng, K. Jiang, W. Hill, Z. Lu, H. Yao, H. Wang, ACS Appl. Mater. Interfaces 11(2019) 3971-3977.
    [4]
    X. Zou, Y. Wu, Y. Liu, D. Liu, W. Li, L. Gu, H. Liu, P. Wang, L. Sun, Y. Zhang, Inside Chem. 4(2018) 1139-1152.
    [5]
    K.L. Yan, J.F. Qin, Z.Z. Liu, B. Dong, J.Q. Chi, W.K. Gao, J.H. Lin, Y.M. Chai, C.G. Liu, Chem. Eng. J. 334(2018) 922-931.
    [6]
    Q. Wang, K. Dastafkan, C. Zhao, Curr. Opin. Electrochem. 10(2018) 16-23.
    [7]
    N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, H.M. Chen, Chem. Soc. Rev. 46(2017) 337-365.
    [8]
    X. Zou, Y. Zhang, Chem. Soc. Rev. 44(2015) 5148-5180.
    [9]
    A. Irshad, N. Munichandraiah, ACS Appl. Mater. Interfaces 7(2015) 15765-15776.
    [10]
    Y. Lee, J. Suntivich, K.J. May, E.E. Perry, Y. Shao-Horn, J. Phys. Chem. Lett. 3(2012) 399-404.
    [11]
    X. Zhang, Y. Zhang, F. Li, C.D. Easton, A.M. Bond, J. Zhang, Appl. Catal. B Environ. 249(2019) 227-234.
    [12]
    G. Liu, Y. Wu, M. Wang, R. Yao, N. Li, Y. Zhao, F. Zhao, J. Li, Int. J. Hydrogen Energy 44(2019) 26992-27000.
    [13]
    Y. Tang, C. Yang, Y. Yang, X. Yin, W. Que, J. Zhu, Electrochim. Acta 296(2019) 762-770.
    [14]
    G. Liu, M. Wang, Y. Wu, N. Li, F. Zhao, Q. Zhao, J. Li, Appl. Catal. B Environ. 260(2020) 118199.
    [15]
    B.H.R. Suryanto, Y. Wang, R.K. Hocking, W. Adamson, C. Zhao, Nat. Commun. 10(2019) 5599.
    [16]
    R. Yao, Y. Wu, M. Wang, N. Li, F. Zhao, Q. Zhao, J. Li, G. Liu, Int. J. Hydrogen Energy 44(2019) 30196-30207.
    [17]
    Z. Chen, Q. Huang, B. Huang, F. Zhang, C. Li, Chin. J. Catal. 40(2019) 38-42.
    [18]
    G. Liu, R. Yao, Y. Zhao, M. Wang, N. Li, Y. Li, X. Bo, J. Li, C. Zhao, Nanoscale 10(2018) 3997-4003.
    [19]
    Z. Zhang, S. Liu, F. Xiao, S. Wang, ACS Sustain. Chem. Eng. 5(2017) 529-536.
    [20]
    C. Xiao, Y. Li, X. Lu, C. Zhao, Adv. Funct. Mater. 26(2016) 3515-3523.
    [21]
    G. Liu, K. Wang, X. Gao, D. He, J. Li, Electrochim. Acta 211(2016) 871-878.
    [22]
    C. Tang, H.S. Wang, H.F. Wang, Q. Zhang, G.L. Tian, J.Q. Nie, F. Wei, Adv. Mater. 27(2015) 4516-4522.
    [23]
    X. Lu, C. Zhao, Nat. Commun. 6(2015) 6616.
    [24]
    G. Liu, X. Gao, K. Wang, D. He, J. Li, Int. J. Hydrogen Energy 41(2016) 17976-17986.
    [25]
    Y. Duan, Z.Y. Yu, S.J. Hu, X.S. Zheng, C.T. Zhang, H.H. Ding, B.C. Hu, Q.Q. Fu, Z.L. Yu, X. Zheng, J.F. Zhu, M.R. Gao, S.H. Yu, Angew. Chem. Int. Ed. 58(2019) 15772-15777.
    [26]
    W. Zhao, T. Xu, T. Li, Y. Wang, H. Liu, J. Feng, S. Ding, Z. Li, M. Wu, Small (2018) 1802829.
    [27]
    G. Liu, D. He, R. Yao, Y. Zhao, J. Li, Nano Res. 11(2018) 1664-1675.
    [28]
    W.J. Hao, R.B. Wu, R.Q. Zhang, Y. Ha, Z.L. Chen, L.C. Wang, Y.J. Yang, X.H. Ma, D.L. Sun, F. Fang, Y.H. Guo, Adv. Energy Mater. 8(2018) 1801372.
    [29]
    H. Li, P. Wen, Q. Li, C. Dun, J. Xing, C. Lu, S. Adhikari, L. Jiang, D.L. Carroll, S.M. Geyer, Adv. Energy Mater. 7(2017) 1700513.
    [30]
    G. Liu, D. He, R. Yao, Y. Zhao, M. Wang, N. Li, J. Li, Int. J. Hydrogen Energy 43(2018) 6138-6149.
    [31]
    H. Fan, H. Yu, Y. Zhang, Y. Zheng, Y. Luo, Z. Dai, B. Li, Y. Zong, Q. Yan, Angew. Chem. Int. Ed. 56(2017) 12566-12570.
    [32]
    X. Jia, M. Wang, G. Liu, Y. Wang, J. Yang, J. Li, Int. J. Hydrogen Energy 44(2019) 24572-24579.
    [33]
    Y. Peng, S. Chen, Green Energy Environ. 3(2018) 335-351.
    [34]
    Y. Wang, D. Liu, Z. Liu, C. Xie, J. Huo, S. Wang, Chem. Commun. 52(2016) 12614-12617.
    [35]
    X.D. Jia, Y.F. Zhao, G.B. Chen, L. Shang, R. Shi, X.F. Kang, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T.R. Zhang, Adv. Energy Mater. 6(2016) 1502585.
    [36]
    G. Liu, D. He, R. Yao, Y. Zhao, J. Li, Electrochim. Acta 253(2017) 498-505.
    [37]
    J. Xiao, Z. Zhang, Y. Zhang, Q. Lv, F. Jing, K. Chi, S. Wang, Nano Energy 51(2018) 223-230.
    [38]
    Z. Wang, H. Liu, R. Ge, X. Ren, J. Ren, D. Yang, L. Zhang, X. Sun, ACS Catal. 8(2018) 2236-2241.
    [39]
    H. Zhang, H. Jiang, Y. Hu, H. Jiang, C. Li, Green Energy Environ. 2(2017) 112-118.
    [40]
    Z. Zhang, S. Liu, J. Xiao, S. Wang, J. Mater. Chem. 4(2016) 9691-9699.
    [41]
    G. Liu, N. Li, Y. Zhao, R. Yao, M. Wang, D. He, J. Li, Electrochim. Acta 283(2018) 1490-1497.
    [42]
    S. Niu, W.J. Jiang, T. Tang, L.P. Yuan, H. Luo, J.S. Hu, Adv. Funct. Mater. 29(2019) 1902180.
    [43]
    Q. Che, Q. Li, X. Chen, Y. Tan, X. Xu, Appl. Catal. B Environ. 263(2020) 118338.
    [44]
    B. Ma, Z. Yang, Y. Chen, Z. Yuan, Nano Res. 12(2019) 375-380.
    [45]
    W. Hao, R. Wu, H. Huang, X. Ou, L. Wang, D. Sun, X. Ma, Y. Guo, Energy Environ. Sci. 13(2020) 102-110.
    [46]
    H. Xu, J. Wei, K. Zhang, Y. Shiraishi, Y. Du, ACS Appl. Mater. Interfaces 10(2018) 29647-29655.
    [47]
    Y.Y. Xu, S.B. Duan, H.Y. Li, M. Yang, S.J. Wang, X. Wang, R.M. Wang, Nano Res. 10(2017) 3103-3112.
    [48]
    Y. Li, H. Zhang, M. Jiang, Y. Kuang, X. Sun, X. Duan, Nano Res 9(2016) 2251-2259.
    [49]
    C. Tang, H.F. Wang, Q. Zhang, Acc. Chem. Res. 51(2018) 881-889.
    [50]
    C. Liu, D. Jia, Q. Hao, X. Zheng, Y. Li, C. Tang, H. Liu, J. Zhang, X. Zheng, ACS Appl. Mater. Interfaces 11(2019) 27667-27676.
    [51]
    W. Xu, Z. Lu, X. Sun, L. Jiang, X. Duan, Acc. Chem. Res. 51(2018) 1590-1598.
    [52]
    G.B. Darband, M. Aliofkhazraei, S. Shanmugam, Renew. Sustain. Energy Rev. 114(2019) 109300.
    [53]
    G.B. Darband, M. Aliofkhazraei, A.S. Rouhaghdam, M.A. Kiani, Appl. Surf. Sci. 465(2019) 846-862.
    [54]
    G.B. Darband, M. Aliofkhazraei, S. Hyun, A.S. Rouhaghdam, S. Shanmugam, J. Power Sources 429(2019) 156-167.
    [55]
    G. Barati Darband, M. Aliofkhazraei, A.S. Rouhaghdam, J. Colloid Interface Sci. 547(2019) 407-420.
    [56]
    L. Han, S. Dong, E. Wang, Adv. Mater. 28(2016) 9266-9291.
    [57]
    G. Liu, Y. Zhao, R. Yao, N. Li, M. Wang, H. Ren, J. Li, C. Zhao, Chem. Eng. J. 355(2019) 49-57.
    [58]
    J. Duan, S. Chen, A. Vasileff, S.Z. Qiao, ACS Nano 10(2016) 8738-8745.
    [59]
    G. Liu, Y. Zhao, K. Wang, D. He, R. Yao, J. Li, ACS Sustain. Chem. Eng. 6(2018) 2353-2361.
    [60]
    X. Zou, Y. Liu, G.D. Li, Y. Wu, D.P. Liu, W. Li, H.W. Li, D. Wang, Y. Zhang, X. Zou, Adv. Mater. 29(2017) 1700404.
    [61]
    J. Xu, J. Li, D. Xiong, B. Zhang, Y. Liu, K.H. Wu, I. Amorim, W. Li, L. Liu, Chem. Sci. 9(2018) 3470-3476.
    [62]
    A. Dutta, N. Pradhan, J. Phys. Chem. Lett. 8(2017) 144-152.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (203) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return