Volume 6 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
Yuewen Shao, Tingting Wang, Kai Sun, Zhanming Zhang, Lijun Zhang, Qingyin Li, Shu Zhang, Guangzhi Hu, Xun Hu. Competition between acidic sites and hydrogenation sites in Cu/ZrO2 catalysts with different crystal phases for conversion of biomass-derived organics. Green Energy&Environment, 2021, 6(4): 557-566. doi: 10.1016/j.gee.2020.05.007
Citation: Yuewen Shao, Tingting Wang, Kai Sun, Zhanming Zhang, Lijun Zhang, Qingyin Li, Shu Zhang, Guangzhi Hu, Xun Hu. Competition between acidic sites and hydrogenation sites in Cu/ZrO2 catalysts with different crystal phases for conversion of biomass-derived organics. Green Energy&Environment, 2021, 6(4): 557-566. doi: 10.1016/j.gee.2020.05.007

Competition between acidic sites and hydrogenation sites in Cu/ZrO2 catalysts with different crystal phases for conversion of biomass-derived organics

doi: 10.1016/j.gee.2020.05.007
  • Oxides with different crystal phases can have important effects on the configuration of surface atoms, which can further affect the distribution of hydrogenation sites and acidic sites as well as the competitions of these varied types of catalytic sites. This could be potentially used to tailor the distribution of the products. In this study, zirconium oxides with different crystal phases supported copper catalysts were prepared for the hydrogenation of the biomass-derived furfural, vanillin, etc. The results showed that both calcination temperature and Cu species affected the shift of zirconia from tetragonal phase to the monoclinic phase. Monoclinic zirconia supported copper catalyst can effectively catalyze the hydrogenation of furfural to furfuryl alcohol via hydrogenation route due to its low amount of Brønsted acidic sites, although the surface area and the exposed metallic Cu surface area were much lower than the tetragonal zirconia supported copper catalyst. Zirconia with tetragonal or tetragonal/monoclinic phases supported copper catalysts contain abundant acidic sites and especially the Brønsted acidic sites, which catalyzed mainly the conversion of furfural via the acid-catalyzed routes such as the acetalization, rather than the hydrogenation. The acidic sites over the Cu/ZrO2 catalyst played more predominant roles than the hydrogenation sites in determining the conversion of the organics like furfural and vanillin.

     

  • • Higher temperature and Cu shifted zirconia from tetragonal to monoclinic phase. • Tetragonal zirconia (ZrO2-T) facilitated the dispersion of metallic Cu species. • ZrO2-T has remarkably more Brønsted acidic sites than monoclinic zirconia (ZrO2-M). • Hydrogenation sites over Cu/ZrO2-M made hydrogenation the dominant reaction. • Abundant acidic sites over Cu/ZrO2-T made acid catalysis the predominant reaction.
  • loading
  • [1]
    L. Hu, L. Lin, Z. Wu, S. Zhou, S. Liu, Renew. Sustain. Energy Rev. 74(2017) 230-257.
    [2]
    X. Hu, K. Nango, L. Bao, T. Li, M.D.M. Hasan, C.Z. Li, Green Chem. 21(2019) 1128-1140.
    [3]
    X. Han, Y. Guo, X. Liu, Q. Xia, Y. Wang, Catal. Today 319(2019) 2-13.
    [4]
    M.J. Biddy, R. Davis, D. Humbird, L. Tao, N. Dowe, M.T. Guarnieri, J.G. Linger, E.M. Karp, D. Salvachúa, D.R. Vardon, G.T. Beckham, ACS Sustain. Chem. Eng. 4(2016) 3196-3211.
    [5]
    R. Ma, X.P. Wu, T. Tong, Z.J. Shao, Y. Wang, X. Liu, Q. Xia, X.Q. Gong, ACS Catal. 7(2016) 333-337.
    [6]
    Z. Zhang, K. Sun, Y. Ma, Q. Liu, Q. Li, S. Zhang, Y. Wang, Q. Liu, D. Dong, X. Hu, Catal. Sci. Technol. 9(2019) 4510-4514.
    [7]
    Y. Cao, H. Zhang, K. Liu, Q. Zhang, K.J. Chen, ACS Sustain. Chem. Eng. 7(2019) 12858-12866.
    [8]
    D. Yin, H. Ren, C. Li, J. Liu, C. Liang, Chin. J. Catal. 39(2018) 319-326.
    [9]
    S. Zhu, Y. Xue, J. Guo, Y. Cen, J. Wang, W. Fan, ACS Catal. 6(2016) 2035-2042.
    [10]
    H.P. Winoto, B.S. Ahn, J. Jae, J. Ind. Eng. Chem. 40(2016) 62-71.
    [11]
    K. Huang, Z.J. Brentzel, K.J. Barnett, J.A. Dumesic, G.W. Huber, C.T. Maravelias, ACS Sustain. Chem. Eng. 5(2017) 4699-4706.
    [12]
    F. Liu, Q. Liu, J. Xu, L. Li, Y.-T. Cui, R. Lang, L. Li, Y. Su, S. Miao, H. Sun, B. Qiao, A. Wang, F. Jérȏme, T. Zhang, Green Chem. 20(2018) 1770-1776.
    [13]
    Y. Shao, J. Wang, H. Du, K. Sun, Z. Zhang, L. Zhang, Q. Li, S. Zhang, Q. Liu, X. Hu, ACS Sustain. Chem. Eng. 8(2020) 5217-5228.
    [14]
    Y. Shao, X. Hu, Z. Zhang, K. Sun, G. Gao, T. Wei, S. Zhang, S. Hu, J. Xiang, Y. Wang, Green Energy Environ. 4(2019) 400-413.
    [15]
    X. Chang, A.F. Liu, B. Cai, J.Y. Luo, H. Pan, Y.B. Huang, ChemSusChem 9(2016) 3330-3337.
    [16]
    Y. Shao, K. Sun, L. Zhang, Q. Xu, Z. Zhang, Q. Li, S. Zhang, Y. Wang, Q. Liu, X. Hu, Green Chem. 21(2019) 6634-6645.
    [17]
    G. Machado, S. Leon, F. Santos, R. Lourega, J. Dullius, M.E. Mollmann, P. Eichler, Nat. Resour. 7(2016) 115-129.
    [18]
    S. Peleteiro, S. Rivas, J.L. Alonso, V. Santos, J.C. Parajo, Bioresour. Technol. 202(2016) 181-191.
    [19]
    D. Li, Q. Liu, C. Zhu, H. Wang, C. Cui, C. Wang, L. Ma, J. Energy Chem. 30(2019) 34-41.
    [20]
    M. Anilkumar, N. Loke, V. Patil, R. Panday, G. Sreenivasarao, Catal. Today 358(2020) 221-227.
    [21]
    Y. Shao, K. Sun, Q. Li, Q. Liu, S. Zhang, Q. Liu, G. Hu, X. Hu, Green Chem. 21(2019) 4499-4511.
    [22]
    R.S. Suppino, R. Landers, A.J.G. Cobo, Appl. Catal. Gen. 525(2016) 41-49.
    [23]
    Y. Han, H. Xu, Y. Su, Z.I. Xu, K. Wang, W. Wang, J. Catal. 370(2019) 70-78.
    [24]
    M. Sudhakar, V.V. Kumar, G. Naresh, M.L. Kantam, S.K. Bhargava, A. Venugopal, Appl. Catal. B Environ. 180(2016) 113-120.
    [25]
    I. Obregón, I. Gandarias, A. Ocio, I. García-García, N. Alvarez de Eulate, P.L. Arias, Appl. Catal. B Environ. 210(2017) 328-341.
    [26]
    S.M. Kim, P.M. Abdala, T. Margossian, D. Hosseini, L. Foppa, A. Armutlulu, W. van Beek, A. Comas-Vives, C. Coperet, C. Muller, J. Am. Chem. Soc. 139(2017) 1937-1949.
    [27]
    L. Liu, F. Gao, P. Concepción, A. Corma, J. Catal. 350(2017) 218-225.
    [28]
    Y. Shao, Y. Li, K. Sun, Z. Zhang, H. Tian, G. Gao, Q. Li, Q. Liu, Q. Liu, X. Hu, Energy Technol. 8(2020) 1900951.
    [29]
    J. Schittkowski, K. Tölle, S. Anke, S. Stürmer, M. Muhler, J. Catal. 352(2017) 120-129.
    [30]
    T. Witoon, J. Chalorngtham, P. Dumrongbunditkul, M. Chareonpanich, J. Limtrakul, Chem. Eng. J. 293(2016) 327-336.
    [31]
    J. Ji, Y. Xu, H. Huang, M. He, S. Liu, G. Liu, R. Xie, Q. Feng, Y. Shu, Y. Zhan, R. Fang, X. Ye, D.Y.C. Leung, Chem. Eng. J. 327(2017) 490-499.
    [32]
    B. Xu, Y. Yang, Y. Xu, B. Han, Y. Wang, X. Liu, Z. Yan, Microporous Mesoporous Mater. 238(2017) 84-89.
    [33]
    H. Zhang, J. Dong, X. Qiao, J. Qin, H. Sun, A. Wang, L. Niu, G. Bai, J. Catal. 372(2019) 258-265.
    [34]
    Z. Yu, L. Zhang, Z. Zhang, S. Zhang, S. Hu, J. Xiang, Y. Wang, Q. Liu, Q. Liu, X. Hu, Int. J. Hydrogen Energy 45(2020) 2720-2728.
    [35]
    M. Masteri-Farahani, M.S. Hosseini, N. Forouzeshfar, Renew. Energy 151(2020) 1092-1101.
    [36]
    K. Sun, Q. Xu, Y. Shao, L. Zhang, Q. Liu, S. Zhang, Y. Wang, X. Hu, Energy Fuels 33(2019) 7480-7490.
    [37]
    X. Hu, S. Jiang, L. Wu, S. Wang, C.Z. Li, Chem. Commun. 53(2017) 2938-2941.
    [38]
    Y. Yamaguchi, Y. Matsubara, T. Ochi, T. Wakamiya, Z.I. Yoshida, J. Am. Chem. Soc. 130(2008) 13867-13869.
    [39]
    X. Hu, R. Gunawan, D. Mourant, M.D.M. Hasan, L. Wu, Y. Song, C. Lievens, C.-Z. Li, Fuel Process. Technol. 155(2017) 2-19.
    [40]
    Y. Shao, W. Du, Z. Gao, K. Sun, Z. Zhang, Q. Li, L. Zhang, S. Zhang, Q. Liu, X. Hu, J. Chem. Technol. Biotechnol. 95(2020) 1337-1347.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (142) PDF downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return