Mingjie Zhang, Chen Han, Wenyao Chen, Wei Luo, Yueqiang Cao, Gang Qian, Xinggui Zhou, Xiaoguang Duan, Shaobin Wang, Xuezhi Duan. Active sites and reaction mechanism for N-doped carbocatalysis of phenol removal. Green Energy&Environment, 2020, 5(4): 444-452. doi: 10.1016/j.gee.2020.05.006
Citation: Mingjie Zhang, Chen Han, Wenyao Chen, Wei Luo, Yueqiang Cao, Gang Qian, Xinggui Zhou, Xiaoguang Duan, Shaobin Wang, Xuezhi Duan. Active sites and reaction mechanism for N-doped carbocatalysis of phenol removal. Green Energy&Environment, 2020, 5(4): 444-452. doi: 10.1016/j.gee.2020.05.006

Active sites and reaction mechanism for N-doped carbocatalysis of phenol removal

doi: 10.1016/j.gee.2020.05.006
  • Heteroatom-doping of carbocatalysts has been a powerful strategy to remarkably enhance the catalytic performance. Herein, the underlying nature of N promotional effects on peroxymonosulfate (PMS) activation for phenol removal is understood by combining kinetics analysis with multiple techniques. A strategy using mixed acid oxidation of carbon nanotube (CNT) followed by NH3 treatment is employed to yield a series of catalysts with different N-doping contents but similar fraction of sp2-hybridized carbon and defective degree, endowing with a chance to discriminate the dominant N-containing active sites. The multi-sites kinetics analysis suggests the graphitic N-containing sites as the dominant active sites. The mechanism of the surface-bound reactive species is also discriminated as the dominant reaction mechanism. The insights reported here could provide the methodology to fundamentally understand the heteroatom-doping effects of carbocatalysis.

     

  • These authors contributed equally to this work.
  • loading
  • [1]
    E.T. Yun, J.H. Lee, J. Kim, H.D. Park, J. Lee, Environ. Sci. Technol. 52 (2018) 7032-7042.
    [2]
    J. Chen, C. Fang, W. Xia, T. Huang, C.H. Huang, Environ. Sci. Technol. 52 (2018) 1461-1470.
    [3]
    J. Yan, M. Lei, L. Zhu, M.N. Anjum, J. Zou, H. Tang, J. Hazard. Mater. 186 (2011) 1398-1404.
    [4]
    X. Duan, H. Sun, Y. Wang, J. Kang, S. Wang, ACS Catal. 5 (2015) 553-559.
    [5]
    G.P. Anipsitakis, D.D. Dionysiou, M.A. Gonzalez, Environ. Sci. Technol. 40 (2006) 1000-1007.
    [6]
    H. Lee, H.I. Kim, S. Weon, W. Choi, Y.S. Hwang, J. Seo, C. Lee, J.H. Kim, Environ. Sci. Technol. 50 (2016) 10134-10142.
    [7]
    J. Cao, L. Lai, B. Lai, G. Yao, X. Chen, L Song, Chem. Eng. J. 364 (2019) 45-56.
    [8]
    Q. Yang, H. Choi, S.R. Al-Abed, D.D. Dionysiou, Appl. Catal. B: Environ. 88 (2009) 462-469.
    [9]
    K.H. Chan, W. Chu, Water Res. 43 (2009) 2513-2521.
    [10]
    E. Saputra, S. Muhammad, H. Sun, H.M. Ang, M.O. Tade, S. Wang, Appl. Catal. B: Environ. 142 (2013) 729-735.
    [11]
    Y. Wang, H. Sun, H.M. Ang, M.O. Tade, S. Wang, Appl. Catal. B: Environ. 164 (2015) 159-167.
    [12]
    P. Zhou, J. Zhang, Y. Zhang, G. Zhang, W. Li, C. Wei, J. Liang, Y. Liu, S. Shu, J. Hazard. Mater. 344 (2018) 1209-1219.
    [13]
    Q. Yang, H. Choi, Y. Chen, D.D. Dionysiou, Appl. Catal. B: Environ. 77 (2008) 300-307.
    [14]
    H. Sun, S. Liu, G. Zhou, H.M. Ang, M.O. Tade, S. Wang, ACS Appl. Mater. Interfaces 4 (2012) 10, 5466-5471.
    [15]
    J. Chen, L. Zhang, T. Huang, W. Li, Y. Wang, Z. Wang, J. Hazard. Mater. 320 (2016) 571-580.
    [16]
    H. Sun, C. Kwan, A. Suvorova, H.M. Ang, M.O. Tade, S. Wang, Appl. Catal. B: Environ. 154 (2014) 134-141.
    [17]
    P. Shao, J. Tian, F. Yang, X. Duan, S. Gao, W. Shi, X. Luo, F. Cui, S. Luo, S. Wang, Adv. Funct. Mater. 28 (2018) 1705295.
    [18]
    X. Duan, Z. Ao, H. Sun, S. Indrawirawan, Y. Wang, J. Kang, F. Liang, Z.H. Zhu, S. Wang, ACS Appl. Mater. Interfaces 7 (2015) 4169-4178.
    [19]
    Z. Lu, X. Xu, Y. Chen, X. Wang, L. Sun, K. Zhuo, Green Energy Environ. 5 (2020) 69-75.
    [20]
    L. Zhao, T. Tang, W. Chen, X. Feng, L. Mi, Green Energy. Environ. 3 (2018) 277-285.
    [21]
    L. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin, R.S. Ruoff, Energy Environ. Sci. 5 (2012) 7936-7942.
    [22]
    Y. Wang, Z. Ao, H. Sun, X. Duan, S. Wang, Appl. Catal. B: Environ. 198 (2016) 295-302.
    [23]
    X. Duan, Z. Ao, D. Li, H. Sun, L. Zhou, A. Suvorova, M. Saunders, G. Wang, S. Wang, Carbon 103 (2016) 404−411.
    [24]
    S. Kundu, W. Xia, W. Busser, M. Becker, D.A. Schmidt, M. Havenith, M.P. Muhler, Phys. Chem. Chem. Phys. 12 (2010) 4351-4359.
    [25]
    C. Han, X. Duan, M. Zhang, W. Fu, X. Duan, W. Ma, S. Liu, S. Wang, X. Zhou, Carbon 153 (2019) 73-80.
    [26]
    X. Chen, W.-D. Oh, Z.-T. Hu, Y.-M. Sun, R.D. Webster, S.-Z. Li, T.-T. Lim, Appl. Catal. B: Environ. 225 (2018) 243-257.
    [27]
    G. Wang, S. Chen, X. Quan, H. Yu, Y. Zhang, Carbon 115 (2017) 730-739.
    [28]
    H. Sun, Y. Wang, S. Liu, L. Ge, L. Wang, Z. Zhu, S. Wang, Chem. Commun. 49 (2013) 9914-9916.
    [29]
    X. Duan, K. O’Donnell, H. Sun, Y. Wang, S. Wang, Small 11 (2015) 3036-3044.
    [30]
    J. Yang, X. Zhou, D. Wu, X. Zhao, Z. Zhou, Adv. Mater. 29 (2017) 1604108.
    [31]
    H. Hou, L. Shao, Y. Zhang, G. Zou, J. Chen, X. Ji, Adv. Sci. 4 (2016) 1600243.
    [32]
    L. Qie, W. Chen, X. Xiong, C. Hu, F. Zou, P. Hu, Y. Huang, Adv. Sci. 2 (2015) 1500195.
    [33]
    J. Liu, Y. Zhang, L. Zhang, F. Xie, A. Vasileff, S.-Z. Qiao, Adv. Mater. 31 (2019) 1901261.
    [34]
    X. Duan, H. Sun, Z. Ao, L. Zhou, G. Wang, S. Wang, Carbon 107 (2016) 371-378.
    [35]
    X. Duan, W. Tian, H. Zhang, H. Sun, Z. Ao, Z. Shao, S. Wang, ACS Catal. 9 (2019) 7494-7519.
    [36]
    X. Li, H. Wang, J.T. Robinson, H. Sanchez, G. Diankov, H. Dai, J. Am. Chem. Soc. 131 (2009) 15939-15944.
    [37]
    X. Duan, Z. Ao, H. Zhang, M. Saunders, H. Sun, Z. Shao, S. Wang, Appl. Catal. B: Environ. 222 (2018) 176-181.
    [38]
    W. Chen, J. Ji, X. Feng, X. Duan, G. Qian, P. Li, X. Zhou, D. Chen, W. Yuan, J. Am. Chem. Soc. 136 (2014) 16736-16739.
    [39]
    X. Feng, X. Duan, G. Qian, X. Zhou, D. Chen, W. Yuan, J. Catal. 317 (2014) 99-104.
    [40]
    W. Fu, W. Chen, G. Qian, D. Chen, W. Yuan, X. Zhou, X. Duan, React. Chem. Eng. 4 (2019) 316-322.
    [41]
    Y. Cao, W. Fu, Z. Sui, X. Duan, D. Chen, X. Zhou, Ind. Eng. Chem. Res. 58 (2019) 1885-1895.
    [42]
    J. Gan, W. Luo, W. Chen, J. Guo, Z. Xiang, B. Chen, F. Yang, Y. Cao, F. Song, X. Duan, X. Zhou, Eur. J. Inorg. Chem. 2019 (2019) 3210-3217.
    [43]
    M. Pan, J. Wang, W. Fu, B. Chen, J. Lei, W. Chen, X. Duan, D. Chen, G. Qian, X. Zhou, Green Energy Environ. 5 (2020) 76-82.
    [44]
    J. Qu, Y. Cao, X. Duan, N. Li, Q. Xu, H. Li, J. He, D. Chen, J. Lu, Angew. Chem. Int. Edit. 131 (2019) 12386-12391.
    [45]
    G.P. Anipsitakis, D.D. Dionysiou, Environ. Sci. Technol. 37 (2003) 4790-4797.
    [46]
    Y. Yao, C. Lian, G. Wu, Y. Hu, F. Wei, M. Yu, S. Wang, Appl. Catal. B: Environ. 219 (2017) 563-571.
    [47]
    X. Tian, P. Gao, Y. Nie, C. Yang, Z. Zhou, Y. Li, Y. Wang, Chem. Commun. 53 (2017) 6589-6592.
    [48]
    P. Liang, C. Zhang, X. Duan, H. Sun, S. Liu, M.O. Tade, S. Wang, Environ. Sci. Nano, 4 (2017) 315-324.
    [49]
    Y. Zhou, J. Jiang, Y. Gao, J. Ma, S.Y. Pang, J. Li, X.T. Lu, L.P. Yuan, Environ. Sci. Technol. 49 (2015) 12941-12950.
    [50]
    W.R. Haag, J. Hoigne, E. Gassman, A.M. Braun, Chemosphere 13 (1984) 631-640.
    [51]
    X. Cheng, H. Guo, Y. Zhang, X. Wu, Y. Liu, Water Res. 113 (2017) 80-88.
    [52]
    S. Zhu, X. Huang, F. Ma, L. Wang, X. Duan, S. Wang, Environ. Sci. Technol. 52 (2018) 8649-8658.
    [53]
    C. Nie, Z. Dai, H. Meng, X. Duan, Y. Qin, Y. Zhou, Z. Ao, S. Wang, T. An, Water Res. 116 (2019) 115043.
    [54]
    X. Duan, H. Qi, S. Wang, Acc. Chem. Res. 51 (2018) 678-687.
    [55]
    W. Ren, G. Nie, P. Zhou, H. Zhang, X. Duan, S. Wang, Environ. Sci. Technol. (2020) DOI: 10.1021/acs.est.0c01161.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (179) PDF downloads(94) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return