Citation: | Junjie Chen, Weixiao Sun, Yongxing Wang, Wenhao Fang. Performant Au hydrogenation catalyst cooperated with Cu-doped Al2O3 for selective conversion of furfural to furfuryl alcohol at ambient pressure. Green Energy&Environment, 2021, 6(4): 546-556. doi: 10.1016/j.gee.2020.05.005 |
Catalytic hydrogenation of furfural to furfuryl alcohol is an important upgrading process for valorization of biomass-derived furanyl platform molecules. However, selective hydrogenation of α,β-unsaturated aldehydes like furfural to the corresponding alcohols at ambient pressure remains challenging in sustainable chemistry. Till date heterogeneous Au hydrogenation catalyst has been scarcely reported for this reaction due to the low reactivity of Au for H2 dissociation. In this work, we showed that Au nanoparticles (loading: 0.2 wt%) with a mean size of about 3 nm supported on Cu-doped Al2O3 can efficiently hydrogenate furfural to furfuryl alcohol in liquid phase at ambient pressure. We demonstrated that doping a small amount of Cu (2 mol%) to γ-Al2O3 may modify the Lewis acidity-basicity of Al2O3 and simultaneously induce the presence of sufficient Cu+ species on surface, which facilitated the hydrogen transfer from i-PrOH to furfural. Moreover, we observed an enhanced reactivity of Au toward molecular H2 via cooperation with the Lewis acidic-basic Cu2O-Al2O3 support. Hence, 100% yield to furfuryl alcohol with a productivity of 0.98 gFA·h-1·${\rm{g}}_{{\rm{cat}}}^{{\rm{ - 1}}}$ at 120 ℃ and 0.1 MPa H2 can be obtained. The prepared Au/Cu-Al2O3 catalyst was found reusable and was effective to the concentrated furfural solution, as well as several typical unsaturated aldehydes.
[1] |
S. Chen, R. Wojcieszak, F. Dumeignil, E. Marceau, S. Royer, Chem. Rev. 118(2018) 11023-11117.
|
[2] |
J. Zhang, Green Energy Environ. 3(2018) 328-334.
|
[3] |
Y. Zhu, Z. Li, J. Chen, Green Energy Environ. 4(2019) 210-244.
|
[4] |
Y. Wang, Y. Lu, Q. Cao, W. Fang, Chem. Commun. 56(2020) 3765-3768.
|
[5] |
W. Fang, Z. Fan, H. Shi, S. Wang, W. Shen, H. Xu, J.M. Clacens, F. De Campo, A. Liebens, M. Pera-Titus, J. Mater. Chem. A 4(2016) 4380-4385.
|
[6] |
Y. Dou, S. Zhou, C. Oldani, W. Fang, Q. Cao, Fuel 214(2018) 45-54.
|
[7] |
Y. Dou, M. Zhang, S. Zhou, C. Oldani, W. Fang, Q. Cao, Eur. J. Inorg. Chem. 2018(2018) 3706-3716.
|
[8] |
T. Gao, J. Chen, W. Fang, Q. Cao, W. Su, F. Dumeignil, J. Catal. 368(2018) 53-68.
|
[9] |
T. Gao, Y. Yin, G. Zhu, Q. Cao, W. Fang, Catal. Today 355(2020) 252-262.
|
[10] |
M.D. Astuti, D.R. Mujiyanti, U.T. Santoso, S. Shimazu, Mol. Catal. 445(2018) 52-60.
|
[11] |
M.A. Jackson, M.G. White, R.T. Haasch, S.C. Peterson, J.A. Blackburn, Mol. Catal. 445(2018) 124-132.
|
[12] |
H. Chen, H. Ruan, X. Lu, J. Fu, T. Langrish, X. Lu, Mol. Catal. 445(2018) 94-101.
|
[13] |
K. Fulajtarova, T. Sotak, M. Hronec, I. Vavra, E. Dobrocka, M. Omastova, Appl. Catal. A 502(2015) 78-85.
|
[14] |
M.G. Dohade, P.L. Dhepe, Green Chem 19(2017) 1144-1154.
|
[15] |
J.J. Musci, A.B. Merlo, M.L. Casella, Catal. Today 296(2017) 43-50.
|
[16] |
M.M. Antunes, S. Lima, P. Neves, A.L. Magalhaes, E. Fazio, F. Neri, M.T. Pereira, A.F. Silva, C.M. Silva, S.M. Rocha, M. Pillinger, A. Urakawa, A.A. Valente, Appl. Catal., B 182(2016) 485-503.
|
[17] |
R. Lopez-Asensio, J.A. Cecilia, C.P. Jimenez-Gomez, C. Garcia-Sancho, R. Moreno-Tost, P. Maireles-Torres, Appl. Catal. A 556(2018) 1-9.
|
[18] |
T. Ooi, H. Ichikawa, K. Maruoka, Angew. Chem. Int. Ed. 40(2001) 3610-3612.
|
[19] |
J. Du, J.R. Zhang, Y. Sun, W.L. Jia, Z.H. Si, H. Gao, X. Tang, X.H. Zeng, T.Z. Lei, S.J. Liu, L. Lin, J. Catal. 368(2018) 69-78.
|
[20] |
M.J. Taylor, L.J. Durndell, M.A. Isaacs, C.M.A. Parlett, K. Wilson, A.F. Lee, G. Kyriakou, Appl. Catal., B 180(2016) 580-585.
|
[21] |
S.M. Rogers, C.R.A. Catlow, C.E. Chan-Thaw, A. Chutia, N. Jian, R.E. Palmer, M. Perdjon, A. Thetford, N. Dimitratos, A. Villa, P.P. Wells, ACS Catal. 7(2017) 2266-2274.
|
[22] |
Y.C. Deng, R. Gao, L. Lin, T. Liu, X.D. Wen, S. Wang, D. Ma, J. Am. Chem. Soc. 140(2018) 14481-14489.
|
[23] |
A.S.K. Hashmi, G.J. Hutchings, Angew. Chem. Int. Ed. 45(2006) 7896-7936.
|
[24] |
A. Corma, H. Garcia, Chem. Soc. Rev. 37(2008) 2096-2126.
|
[25] |
J. Chen, W. Fang, Q. Zhang, W. Deng, Y. Wang, Chem. Asian J. 9(2014) 2187-2196.
|
[26] |
T. Gao, T. Gao, W. Fang, Q. Cao, Mol. Catal. 439(2017) 171-179.
|
[27] |
W. Sun, T. Gao, G. Zhu, Q. Cao, W. Fang, Chem. Select. 5(2020) 1416-1423.
|
[28] |
J.E. Bailie, G.J. Hutchings, Chem. Commun. (1999) 2151-2152.
|
[29] |
C. Milone, M.L. Tropeano, G. Gulino, G. Neri, R. Ingoglia, S. Galvagno, Chem. Commun. (2002) 868-869.
|
[30] |
B.S. Takale, S. Wang, X. Zhang, X. Feng, X. Yu, T. Jin, M. Bao, Y. Yamamoto, Chem. Commun. 50(2014) 14401-14404.
|
[31] |
C.H. Hao, X.N. Guo, Y.T. Pan, S. Chen, Z.F. Jiao, H. Yang, X.Y. Guo, J. Am. Chem. Soc. 138(2016) 9361-9364.
|
[32] |
J. Ohyama, A. Esaki, Y. Yamamoto, S. Arai, A. Satsuma, RSC Adv. 3(2013) 1033-1036.
|
[33] |
N. Almora-Barrios, I. Cano, P.W.N.M. van Leeuwen, N. López, ACS Catal. 7(2017) 3949-3954.
|
[34] |
J. Dong, M.M. Zhu, G.S. Zhang, Y.M. Liu, Y. Cao, S. Liu, Y.D. Wang, Chin. J. Catal. 37(2016) 1669-1675.
|
[35] |
M. Li, Y. Hao, F. Cárdenas-Lizana, M.A. Keane, Catal. Commun. 69(2015) 119-122.
|
[36] |
B. Qi, X. Li, L. Sun, B. Chen, H. Chen, C. Wu, H. Zhang, X. Zhou, Nanoscale 10(2018) 19846-19853.
|
[37] |
S. Wu, W. Sun, J. Chen, J. Zhao, Q. Cao, W. Fang, Q. Zhao, J. Catal. 377(2019) 110-121.
|
[38] |
M. Zhang, S. Wu, L. Bian, Q. Cao, W. Fang, Catal. Sci. Technol. 9(2019) 286-301.
|
[39] |
W. Fang, C. Pirez, S. Paul, M. Jiménez-Ruiz, H. Jobic, F. Dumeignil, L. Jalowiecki-Duhamel, Int. J. Hydrogen Energy 41(2016) 15443-15452.
|
[40] |
W. Fang, Y. Romani, Y. Wei, M. Jiménez-Ruiz, H. Jobic, S. Paul, L. Jalowiecki-Duhamel, Int. J. Hydrogen Energ. 43(2018) 17643-17655.
|
[41] |
C. Reichardt, Chem. Rev. 94(1994) 2319-2358.
|
[42] |
X. Li, S.S.S. Fang, J. Teo, Y.L. Foo, A. Borgna, M. Lin, Z. Zhong, ACS Catal 2(2012) 360-369.
|
[43] |
C.P. Jiménez-Gómez, J.A. Cecilia, D. Durán-Martín, R. Moreno-Tost, J. Santamaría-González, J. Mérida-Robles, R. Mariscal, P. MairelesTorres, J. Catal. 336(2016) 107-115.
|
[44] |
C.P. Jiménez-Gómez, J.A. Cecilia, F.I. Franco-Duro, M. Pozo, R. Moreno-Tost, P. Maireles-Torres, Mol. Catal. 455(2018) 121-131.
|
[45] |
A. Sandoval, A. Gómez-Cortés, R. Zanella, G. Díaz, J.M. Saniger, J. Mol. Catal. A:Chem. 278(2007) 200-208.
|
[46] |
H.C. Yang, F.W. Chang, L.S. Roselin, J. Mol. Catal. A Chem. 276(2007) 184-190.
|
[47] |
T.S. Mozer, D.A. Dziuba, C.T.P. Vieira, F.B. Passos, J. Power Sources. 187(2009) 209-215.
|
[48] |
J. Chen, Q. Zhang, W. Fang, Y. Wang, Chin. J. Catal. 31(2010) 1061-1070.
|
[49] |
M. Turco, G. Bagnasco, C. Cammarano, P. Senese, U. Costantino, M. Sisani, Appl. Catal., B 77(2007) 46-57.
|
[50] |
H. Chen, H.H. Ruan, X.L. Lu, J. Fu, T. Langrish, X.Y. Lu, Mol. Catal. 445(2018) 94-101.
|
[51] |
G. Lu, P. Zhang, D. Sun, L. Wang, K. Zhou, Z.X. Wang, G.C. Guo, Chem. Sci. 5(2014) 1082-1090.
|
[52] |
S. Ohno, M. Wilde, K. Mukai, J. Yoshinobu, K. Fukutani, J Phys. Chem. C. 120(2016) 11481-11489.
|
[53] |
S. Bai, L. Bu, Q. Shao, X. Zhu, X. Huang, J. Am. Chem. Soc. 140(2018) 8384-8387.
|
[54] |
W. Liu, Y. Jiang, K.-H. Dostert, C.P. O'Brien, W. Riedel, A. Savara, S. Schauermann, A. Tkatchenko, Sci. Adv. 3(2017), e1700939.
|
[55] |
G. Su, S. Yang, Y. Jiang, J. Li, S. Li, J.C. Ren, W. Liu, Prog. Surf. Sci. 94(2019) 100561.
|
1. | Dou, K., Xie, D., Shi, J. et al. Structural characterization of MXene-supported cobalt nanoparticle catalysts and their catalytic performance in the hydrogenation of furfural to furfuryl alcohol. Journal of Molecular Structure, 2025. doi:10.1016/j.molstruc.2024.139518 | |
2. | Zhang, S., He, Y.-C., Ma, C. Transformation of D-xylose into furfuryl alcohol via an efficient chemobiological approach in a benign deep eutectic solvent lactic acid:betaine-water reaction system. Journal of Molecular Liquids, 2024. doi:10.1016/j.molliq.2024.125576 | |
3. | Tian, Y., Xie, W., Yang, Z. et al. Efficient and selective upgrading of biomass-derived furfural into 1, 5 pentanediol by Co2+ etched ZIF-8 derived ZnCo layered double hydroxides nanoflake. Chemical Engineering Journal, 2024. doi:10.1016/j.cej.2024.152669 | |
4. | Sun, W., Ge, X., Du, W. et al. Kinetics and mechanistic insights into selective hydrogenation of furfural to furfuryl alcohol over Ni–Ga intermetallics. AIChE Journal, 2024, 70(6): e18423. doi:10.1002/aic.18423 | |
5. | Li, Y., Shen, Q., Nian, Y. et al. Promoting effect of oxygen vacancies in Co/CoAl2O4 catalyst steered with a straightforward method on hydrogenation of furfural to 2-methylfuran. Applied Catalysis B: Environmental, 2024. doi:10.1016/j.apcatb.2023.123529 | |
6. | Dimitratos, N., Vilé, G., Albonetti, S. et al. Strategies to improve hydrogen activation on gold catalysts. Nature Reviews Chemistry, 2024, 8(3): 195-210. doi:10.1038/s41570-024-00578-2 | |
7. | Kim, Y.E., Lee, K.-Y., Lee, M.S. Morphology-dependent wrinkled silica-supported Pd catalysts for hydrogenation of furfural under mild conditions. Catalysis Today, 2024. doi:10.1016/j.cattod.2023.114392 | |
8. | Xie, Y., Chen, J., Yu, F. et al. Effect of regulators on the catalytic performance of UiO-66 in furfural transfer hydrogenation to furfuryl alcohol | [调节剂对 UiO-66 在糠醛转移加氢制糠醇反应中催化性能的影响]. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2023, 42(11): 5756-5763. doi:10.16085/j.issn.1000-6613.2023-0020 | |
9. | Li, J., Niu, X., Zhu, Y. Synergistic effect of surface Cu0 and Cu+ species on improved selective hydrogenation of furfural to furfuryl alcohol over hydrotalcite-derived CuxMg3Al oxides. Applied Surface Science, 2023. doi:10.1016/j.apsusc.2023.157774 | |
10. | Hu, L., Chen, K., Li, J. et al. Highly selective transfer hydrogenation of biomass-derived furfural to furfuryl alcohol over a zirconium-melamine coordination catalyst without Brønsted acid sites. Chemical Engineering Journal, 2023. doi:10.1016/j.cej.2023.145656 | |
11. | Zhang, W., Wang, Y., Gu, B. et al. Regulating the Interaction within Pd-Cu Dual Metal Sites for Selective Hydrogenation of Furfural Using Ambient H2 Pressure. ACS Sustainable Chemistry and Engineering, 2023, 11(34): 12798-12808. doi:10.1021/acssuschemeng.3c03763 | |
12. | Li, Y., Li, H., Li, K. et al. Roles of Oxygen Vacancies in CeO2 Nanostructures for Catalytic Aerobic Cyclohexane Oxidation. ACS Applied Nano Materials, 2023, 6(15): 14214-14227. doi:10.1021/acsanm.3c02147 | |
13. | Zhang, H., Zhang, R., Zhang, W. et al. Base-free selective oxidation of 5-hydroxymethylfurfural over Pt nanoparticles on surface Nb-enriched Co-Nb oxide. Applied Catalysis B: Environmental, 2023. doi:10.1016/j.apcatb.2023.122670 | |
14. | Li, Y., Chen, S., Jin, Y. et al. The Role of V-Species and O-Species on Controlled-Hydrogen-Reduction VOx Surfaces in Cyclohexane Oxidation. ChemistrySelect, 2023, 8(29): e202301223. doi:10.1002/slct.202301223 | |
15. | Li, F., Yang, R., Du, Z. et al. One pot cascade conversion of furfural to alkyl levulinate over Lu(OTf)3 without external H2. Molecular Catalysis, 2023. doi:10.1016/j.mcat.2023.113315 | |
16. | Wu, S., Shang, R., Zhang, H. et al. Steering the Au−FexCo1Oy interface for efficient imine synthesis at low temperature via oxidative coupling reaction. Molecular Catalysis, 2023. doi:10.1016/j.mcat.2023.113292 | |
17. | Wang, S., Lv, Y., Ren, J. et al. Ultrahigh Selective Hydrogenation of Furfural Enabled by Modularizing Hydrogen Dissociation and Substrate Activation. ACS Catalysis, 2023, 13(13): 8720-8730. doi:10.1021/acscatal.3c01506 | |
18. | Iuliano, M., Ponticorvo, E., Cirillo, C. et al. Catalytic hydrogenation of organic dyes by Ag and Au magnetic nanoparticles supported on nanocellulose from waste pistachio shells. Molecular Catalysis, 2023. doi:10.1016/j.mcat.2023.113179 | |
19. | Sun, R., Tian, Y., Xiao, L. et al. Porous Hollow Nanostructure Promoting the Catalytic Performance and Stability of Ni3P in Furfural Hydrogenation. Industrial and Engineering Chemistry Research, 2023, 62(8): 3525-3537. doi:10.1021/acs.iecr.2c03327 | |
20. | Tian, Y., Feng, Y., Li, Z. et al. Green and efficient selective hydrogenation of furfural to furfuryl alcohol over hybrid CoOx/Nb2O5 nanocatalyst in water. Molecular Catalysis, 2023. doi:10.1016/j.mcat.2023.112981 | |
21. | Di, J., Zhang, L., Tang, Z. et al. A Hybrid Strategy for the Efficient Biosynthesis of Fufuryl Alcohol from Corncob in Formic Acid–Water. Catalysis Letters, 2023, 153(3): 682-688. doi:10.1007/s10562-022-04003-5 | |
22. | Chen, J., Jia, W., Yu, X. et al. Insight into the Co2+/Co3+ sites for the selective reduction of furfural to furfuryl alcohol. Fuel, 2023. doi:10.1016/j.fuel.2022.126137 | |
23. | Ye, L., Han, Y., Zhang, M. et al. Enhanced sorption of carbonyl groups by zirconium hydroxide modified with polydopamine for highly selective production of alcohols via MPV reduction under mild conditions. Fuel, 2023. doi:10.1016/j.fuel.2022.125786 | |
24. | He, A., Dong, L., Xu, N. et al. Complete oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid by a novel enzyme–nanozyme hybrid catalyst. Chemical Engineering Journal, 2022. doi:10.1016/j.cej.2022.137797 | |
25. | Chen, X., Liu, W., Luo, J. et al. Structure Evolution of Ni-Cu Bimetallic Catalysts Derived from Layered Double Hydroxides for Selective Hydrogenation of Furfural to Tetrahydrofurfuryl Alcohol. Industrial and Engineering Chemistry Research, 2022, 61(35): 12953-12965. doi:10.1021/acs.iecr.2c01624 | |
26. | Lin, P., Shang, R., Zhang, Q. et al. One-pot synthesis of finely-dispersed Au nanoparticles on ZnO hexagonal sheets for base-free aerobic oxidation of vanillyl alcohol. Catalysis Science and Technology, 2022, 12(14): 4613-4623. doi:10.1039/d2cy00837h | |
27. | Li, R., Pan, X., Li, X. et al. Continuous Flow Preparation of 2, 2, 4‑trimethyl‑1, 3‑pentanediol and its Kinetics | [微通道反应器中合成2, 2, 4‑三甲基‑1, 3‑戊二醇的连续流工艺及其动力学]. Hanneng Cailiao/Chinese Journal of Energetic Materials, 2022, 30(5): 424-430. doi:10.11943/CJEM2022019 | |
28. | Quan, Y., Jin, Y., Wang, N. et al. Efficient CuZn/SiO2 lamellar catalysts for methanol dehydrogenation: New insights into the role of zinc. Applied Catalysis A: General, 2022. doi:10.1016/j.apcata.2022.118585 | |
29. | Li, X., Lu, X., Hu, W. et al. Phosphotungstic acid functionalized biochar for furfural production from corncob. Fuel Processing Technology, 2022. doi:10.1016/j.fuproc.2022.107178 | |
30. | Gao, X., Ding, Y., Peng, L. et al. On the effect of zeolite acid property and reaction pathway in Pd–catalyzed hydrogenation of furfural to cyclopentanone. Fuel, 2022. doi:10.1016/j.fuel.2021.123074 | |
31. | Wang, Y., Gao, T., Lu, Y. et al. Efficient hydrogenation of furfural to furfuryl alcohol by magnetically recoverable RuCo bimetallic catalyst. Green Energy and Environment, 2022, 7(2): 275-287. doi:10.1016/j.gee.2020.09.014 | |
32. | An, Z., Li, J. Recent advances in the catalytic transfer hydrogenation of furfural to furfuryl alcohol over heterogeneous catalysts. Green Chemistry, 2022, 24(5): 1780-1808. doi:10.1039/d1gc04440k | |
33. | Gao, M., Jiang, Z., Ding, W. et al. Selective degradation of hemicellulose into oligosaccharides assisted by ZrOCl2and their potential application as a tanning agent. Green Chemistry, 2022, 24(1): 375-383. doi:10.1039/d1gc03827c | |
34. | Liu, S., Shang, D., Wang, H. et al. Novel solid acid catalyst for the production of 5-hydroxymethylfurfural with fructose dehydration. Bio-Medical Materials and Engineering, 2022, 33(6): 477-489. doi:10.3233/BME-211385 | |
35. | Liang, J., Ji, L., He, J. et al. Chemoenzymatic Conversion of Biomass-Derived D-Xylose to Furfuryl Alcoholwith Corn Stalk-Based Solid Acid Catalyst and Reductase Biocatalyst in aDeep Eutectic Solvent–Water System. Processes, 2022, 10(1): 113. doi:10.3390/pr10010113 | |
36. | Yan, X., Zhang, G., Zhu, Q. et al. CuZn@N‑doped graphene layer for upgrading of furfural to furfuryl alcohol. Molecular Catalysis, 2022. doi:10.1016/j.mcat.2021.112066 | |
37. | Ahorsu, R., Constanti, M., Medina, F. Recent Impacts of Heterogeneous Catalysis in Biorefineries. Industrial and Engineering Chemistry Research, 2021, 60(51): 18612-18626. doi:10.1021/acs.iecr.1c02789 | |
38. | He, A., Hu, L., Zhang, Y. et al. High-Efficiency Catalytic Transfer Hydrogenation of Biomass-Based 5-Hydroxymethylfurfural to 2, 5-Bis(hydroxymethyl)furan over a Zirconium-Carbon Coordination Catalyst. ACS Sustainable Chemistry and Engineering, 2021, 9(46): 15557-15570. doi:10.1021/acssuschemeng.1c05618 | |
39. | Sun, W., Lin, P., Tang, Q. et al. Sustainable synthesis of vanillin through base-free selective oxidation using synergistic AgPd nanoparticles loaded on ZrO2. Catalysis Science and Technology, 2021, 11(22): 7268-7277. doi:10.1039/d1cy01526e | |
40. | Wang, Y., Wang, Y., Tang, Q. et al. Efficient activation of H2 on copper species immobilized by MCM-41 for selective hydrogenation of furfural at ambient pressure. Molecular Catalysis, 2021. doi:10.1016/j.mcat.2021.111921 | |
41. | Yang, H., Chen, H., Lin, W. et al. Facile Preparation of Oxygen-Vacancy-Mediated Mn3O4for Catalytic Transfer Hydrogenation of Furfural. Industrial and Engineering Chemistry Research, 2021, 60(27): 9706-9715. doi:10.1021/acs.iecr.1c00985 | |
42. | Vikanova, K., Redina, E., Kapustin, G. et al. Advanced Room-Temperature Synthesis of 2, 5-Bis(hydroxymethyl)furan-A Monomer for Biopolymers-From 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2021, 9(3): 1161-1171. doi:10.1021/acssuschemeng.0c06560 | |
43. | Kumar, P., Khan, M.A., Hu, J. et al. Single-atom catalysts for biomass-derived drop-in chemicals. Advanced Catalysis for Drop-in Chemicals, 2021. doi:10.1016/B978-0-12-823827-1.00009-2 | |
44. | Sun, W., Wu, S., Lu, Y. et al. Effective Control of Particle Size and Electron Density of Pd/C and Sn-Pd/C Nanocatalysts for Vanillin Production via Base-Free Oxidation. ACS Catalysis, 2020, 10(14): 7699-7709. doi:10.1021/acscatal.0c01849 |