Junjie Chen, Weixiao Sun, Yongxing Wang, Wenhao Fang. Performant Au hydrogenation catalyst cooperated with Cu-doped Al2O3 for selective conversion of furfural to furfuryl alcohol at ambient pressure. Green Energy&Environment, 2021, 6(4): 546-556. doi: 10.1016/j.gee.2020.05.005
Citation: Junjie Chen, Weixiao Sun, Yongxing Wang, Wenhao Fang. Performant Au hydrogenation catalyst cooperated with Cu-doped Al2O3 for selective conversion of furfural to furfuryl alcohol at ambient pressure. Green Energy&Environment, 2021, 6(4): 546-556. doi: 10.1016/j.gee.2020.05.005

Performant Au hydrogenation catalyst cooperated with Cu-doped Al2O3 for selective conversion of furfural to furfuryl alcohol at ambient pressure

doi: 10.1016/j.gee.2020.05.005
  • Catalytic hydrogenation of furfural to furfuryl alcohol is an important upgrading process for valorization of biomass-derived furanyl platform molecules. However, selective hydrogenation of α,β-unsaturated aldehydes like furfural to the corresponding alcohols at ambient pressure remains challenging in sustainable chemistry. Till date heterogeneous Au hydrogenation catalyst has been scarcely reported for this reaction due to the low reactivity of Au for H2 dissociation. In this work, we showed that Au nanoparticles (loading: 0.2 wt%) with a mean size of about 3 nm supported on Cu-doped Al2O3 can efficiently hydrogenate furfural to furfuryl alcohol in liquid phase at ambient pressure. We demonstrated that doping a small amount of Cu (2 mol%) to γ-Al2O3 may modify the Lewis acidity-basicity of Al2O3 and simultaneously induce the presence of sufficient Cu+ species on surface, which facilitated the hydrogen transfer from i-PrOH to furfural. Moreover, we observed an enhanced reactivity of Au toward molecular H2 via cooperation with the Lewis acidic-basic Cu2O-Al2O3 support. Hence, 100% yield to furfuryl alcohol with a productivity of 0.98 gFA·h-1·${\rm{g}}_{{\rm{cat}}}^{{\rm{ - 1}}}$ at 120 ℃ and 0.1 MPa H2 can be obtained. The prepared Au/Cu-Al2O3 catalyst was found reusable and was effective to the concentrated furfural solution, as well as several typical unsaturated aldehydes.

     

  • J. Chen and W. Sun contributed equally to this work.
  • [1]
    S. Chen, R. Wojcieszak, F. Dumeignil, E. Marceau, S. Royer, Chem. Rev. 118(2018) 11023-11117.
    [2]
    J. Zhang, Green Energy Environ. 3(2018) 328-334.
    [3]
    Y. Zhu, Z. Li, J. Chen, Green Energy Environ. 4(2019) 210-244.
    [4]
    Y. Wang, Y. Lu, Q. Cao, W. Fang, Chem. Commun. 56(2020) 3765-3768.
    [5]
    W. Fang, Z. Fan, H. Shi, S. Wang, W. Shen, H. Xu, J.M. Clacens, F. De Campo, A. Liebens, M. Pera-Titus, J. Mater. Chem. A 4(2016) 4380-4385.
    [6]
    Y. Dou, S. Zhou, C. Oldani, W. Fang, Q. Cao, Fuel 214(2018) 45-54.
    [7]
    Y. Dou, M. Zhang, S. Zhou, C. Oldani, W. Fang, Q. Cao, Eur. J. Inorg. Chem. 2018(2018) 3706-3716.
    [8]
    T. Gao, J. Chen, W. Fang, Q. Cao, W. Su, F. Dumeignil, J. Catal. 368(2018) 53-68.
    [9]
    T. Gao, Y. Yin, G. Zhu, Q. Cao, W. Fang, Catal. Today 355(2020) 252-262.
    [10]
    M.D. Astuti, D.R. Mujiyanti, U.T. Santoso, S. Shimazu, Mol. Catal. 445(2018) 52-60.
    [11]
    M.A. Jackson, M.G. White, R.T. Haasch, S.C. Peterson, J.A. Blackburn, Mol. Catal. 445(2018) 124-132.
    [12]
    H. Chen, H. Ruan, X. Lu, J. Fu, T. Langrish, X. Lu, Mol. Catal. 445(2018) 94-101.
    [13]
    K. Fulajtarova, T. Sotak, M. Hronec, I. Vavra, E. Dobrocka, M. Omastova, Appl. Catal. A 502(2015) 78-85.
    [14]
    M.G. Dohade, P.L. Dhepe, Green Chem 19(2017) 1144-1154.
    [15]
    J.J. Musci, A.B. Merlo, M.L. Casella, Catal. Today 296(2017) 43-50.
    [16]
    M.M. Antunes, S. Lima, P. Neves, A.L. Magalhaes, E. Fazio, F. Neri, M.T. Pereira, A.F. Silva, C.M. Silva, S.M. Rocha, M. Pillinger, A. Urakawa, A.A. Valente, Appl. Catal., B 182(2016) 485-503.
    [17]
    R. Lopez-Asensio, J.A. Cecilia, C.P. Jimenez-Gomez, C. Garcia-Sancho, R. Moreno-Tost, P. Maireles-Torres, Appl. Catal. A 556(2018) 1-9.
    [18]
    T. Ooi, H. Ichikawa, K. Maruoka, Angew. Chem. Int. Ed. 40(2001) 3610-3612.
    [19]
    J. Du, J.R. Zhang, Y. Sun, W.L. Jia, Z.H. Si, H. Gao, X. Tang, X.H. Zeng, T.Z. Lei, S.J. Liu, L. Lin, J. Catal. 368(2018) 69-78.
    [20]
    M.J. Taylor, L.J. Durndell, M.A. Isaacs, C.M.A. Parlett, K. Wilson, A.F. Lee, G. Kyriakou, Appl. Catal., B 180(2016) 580-585.
    [21]
    S.M. Rogers, C.R.A. Catlow, C.E. Chan-Thaw, A. Chutia, N. Jian, R.E. Palmer, M. Perdjon, A. Thetford, N. Dimitratos, A. Villa, P.P. Wells, ACS Catal. 7(2017) 2266-2274.
    [22]
    Y.C. Deng, R. Gao, L. Lin, T. Liu, X.D. Wen, S. Wang, D. Ma, J. Am. Chem. Soc. 140(2018) 14481-14489.
    [23]
    A.S.K. Hashmi, G.J. Hutchings, Angew. Chem. Int. Ed. 45(2006) 7896-7936.
    [24]
    A. Corma, H. Garcia, Chem. Soc. Rev. 37(2008) 2096-2126.
    [25]
    J. Chen, W. Fang, Q. Zhang, W. Deng, Y. Wang, Chem. Asian J. 9(2014) 2187-2196.
    [26]
    T. Gao, T. Gao, W. Fang, Q. Cao, Mol. Catal. 439(2017) 171-179.
    [27]
    W. Sun, T. Gao, G. Zhu, Q. Cao, W. Fang, Chem. Select. 5(2020) 1416-1423.
    [28]
    J.E. Bailie, G.J. Hutchings, Chem. Commun. (1999) 2151-2152.
    [29]
    C. Milone, M.L. Tropeano, G. Gulino, G. Neri, R. Ingoglia, S. Galvagno, Chem. Commun. (2002) 868-869.
    [30]
    B.S. Takale, S. Wang, X. Zhang, X. Feng, X. Yu, T. Jin, M. Bao, Y. Yamamoto, Chem. Commun. 50(2014) 14401-14404.
    [31]
    C.H. Hao, X.N. Guo, Y.T. Pan, S. Chen, Z.F. Jiao, H. Yang, X.Y. Guo, J. Am. Chem. Soc. 138(2016) 9361-9364.
    [32]
    J. Ohyama, A. Esaki, Y. Yamamoto, S. Arai, A. Satsuma, RSC Adv. 3(2013) 1033-1036.
    [33]
    N. Almora-Barrios, I. Cano, P.W.N.M. van Leeuwen, N. López, ACS Catal. 7(2017) 3949-3954.
    [34]
    J. Dong, M.M. Zhu, G.S. Zhang, Y.M. Liu, Y. Cao, S. Liu, Y.D. Wang, Chin. J. Catal. 37(2016) 1669-1675.
    [35]
    M. Li, Y. Hao, F. Cárdenas-Lizana, M.A. Keane, Catal. Commun. 69(2015) 119-122.
    [36]
    B. Qi, X. Li, L. Sun, B. Chen, H. Chen, C. Wu, H. Zhang, X. Zhou, Nanoscale 10(2018) 19846-19853.
    [37]
    S. Wu, W. Sun, J. Chen, J. Zhao, Q. Cao, W. Fang, Q. Zhao, J. Catal. 377(2019) 110-121.
    [38]
    M. Zhang, S. Wu, L. Bian, Q. Cao, W. Fang, Catal. Sci. Technol. 9(2019) 286-301.
    [39]
    W. Fang, C. Pirez, S. Paul, M. Jiménez-Ruiz, H. Jobic, F. Dumeignil, L. Jalowiecki-Duhamel, Int. J. Hydrogen Energy 41(2016) 15443-15452.
    [40]
    W. Fang, Y. Romani, Y. Wei, M. Jiménez-Ruiz, H. Jobic, S. Paul, L. Jalowiecki-Duhamel, Int. J. Hydrogen Energ. 43(2018) 17643-17655.
    [41]
    C. Reichardt, Chem. Rev. 94(1994) 2319-2358.
    [42]
    X. Li, S.S.S. Fang, J. Teo, Y.L. Foo, A. Borgna, M. Lin, Z. Zhong, ACS Catal 2(2012) 360-369.
    [43]
    C.P. Jiménez-Gómez, J.A. Cecilia, D. Durán-Martín, R. Moreno-Tost, J. Santamaría-González, J. Mérida-Robles, R. Mariscal, P. MairelesTorres, J. Catal. 336(2016) 107-115.
    [44]
    C.P. Jiménez-Gómez, J.A. Cecilia, F.I. Franco-Duro, M. Pozo, R. Moreno-Tost, P. Maireles-Torres, Mol. Catal. 455(2018) 121-131.
    [45]
    A. Sandoval, A. Gómez-Cortés, R. Zanella, G. Díaz, J.M. Saniger, J. Mol. Catal. A:Chem. 278(2007) 200-208.
    [46]
    H.C. Yang, F.W. Chang, L.S. Roselin, J. Mol. Catal. A Chem. 276(2007) 184-190.
    [47]
    T.S. Mozer, D.A. Dziuba, C.T.P. Vieira, F.B. Passos, J. Power Sources. 187(2009) 209-215.
    [48]
    J. Chen, Q. Zhang, W. Fang, Y. Wang, Chin. J. Catal. 31(2010) 1061-1070.
    [49]
    M. Turco, G. Bagnasco, C. Cammarano, P. Senese, U. Costantino, M. Sisani, Appl. Catal., B 77(2007) 46-57.
    [50]
    H. Chen, H.H. Ruan, X.L. Lu, J. Fu, T. Langrish, X.Y. Lu, Mol. Catal. 445(2018) 94-101.
    [51]
    G. Lu, P. Zhang, D. Sun, L. Wang, K. Zhou, Z.X. Wang, G.C. Guo, Chem. Sci. 5(2014) 1082-1090.
    [52]
    S. Ohno, M. Wilde, K. Mukai, J. Yoshinobu, K. Fukutani, J Phys. Chem. C. 120(2016) 11481-11489.
    [53]
    S. Bai, L. Bu, Q. Shao, X. Zhu, X. Huang, J. Am. Chem. Soc. 140(2018) 8384-8387.
    [54]
    W. Liu, Y. Jiang, K.-H. Dostert, C.P. O'Brien, W. Riedel, A. Savara, S. Schauermann, A. Tkatchenko, Sci. Adv. 3(2017), e1700939.
    [55]
    G. Su, S. Yang, Y. Jiang, J. Li, S. Li, J.C. Ren, W. Liu, Prog. Surf. Sci. 94(2019) 100561.
  • Relative Articles

    [1]Nan Song, Xingxing Li, Ebtihal Abograin, Wenyao Chen, Junbo Cao, Jing Zhang, De Chen, Xuezhi Duan, Xinggui Zhou. CO hydrogenation conversion driven by micro-environments of active sites over iron carbide catalysts.  Green Energy&Environment. doi: 10.1016/j.gee.2024.03.003
    [2]Weigang Hu, Haoqi Liu, Yuankun Zhang, Jiawei Ji, Guangjun Li, Xiao Cai, Xu Liu, Wen Wu Xu, Weiping Ding, Yan Zhu. Methanol steam reforming for hydrogen production driven by an atomically precise Cu catalyst.  Green Energy&Environment, 2024, 9(7): 1079-1084. doi: 10.1016/j.gee.2023.12.004
    [3]Wenjie Xiong, Xiaomin Zhang, Xingbang Hu, Youting Wu. Self-separation ionic liquid catalyst for the highly effective conversion of H2S by α,β-unsaturated carboxylate esters under mild conditions.  Green Energy&Environment, 2024, 9(9): 1440-1448. doi: 10.1016/j.gee.2023.03.001
    [4]Xunxun Li, Yaru Wang, Dongyun Chen, Najun Li, Qingfeng Xu, Hua Li, Jinghui He, Jianmei Lu. A highly dispersed Pt/copper modified-MnO2 catalyst for the complete oxidation of volatile organic compounds: The effect of oxygen species on the catalytic mechanism.  Green Energy&Environment, 2023, 8(2): 538-547. doi: 10.1016/j.gee.2021.07.004
    [5]Chenyang Li, Yuan Zhang, Debao Li, Baojun Wang, Christopher K. Russell, Maohong Fan, Riguang Zhang. The newly-assisted catalytic mechanism of surface hydroxyl species performed as the promoter in syngas-to-C2 species on the Cu-based bimetallic catalysts.  Green Energy&Environment, 2023, 8(2): 487-498. doi: 10.1016/j.gee.2021.06.001
    [6]Ran Xi, Yiwei Tang, Richard Lee Smith, Xiaoning Liu, Le Liu, Xinhua Qi. Selective hydrogenation of glucose to sorbitol with tannic acid-based porous carbon sphere supported Ni-Ru bimetallic catalysts.  Green Energy&Environment, 2023, 8(6): 1719-1727. doi: 10.1016/j.gee.2022.04.003
    [7]Difan Li, Xiuge Zhao, Qingqing Zhou, Bingjie Ding, Anna Zheng, Qingpo Peng, Zhenshan Hou. Vicinal hydroxyl group-inspired selective oxidation of glycerol to glyceric acid on hydroxyapatite supported Pd catalyst.  Green Energy&Environment, 2022, 7(4): 691-703. doi: 10.1016/j.gee.2020.11.018
    [8]Ying Wang, Yamin Qi, Maohong Fan, Baojun Wang, Lixia Ling, Riguang Zhang. C2H2 semi-hydrogenation on the PdxMy cluster/graphdiyne catalysts: Effects of cluster composition and size on the activity and selectivity.  Green Energy&Environment, 2022, 7(3): 500-511. doi: 10.1016/j.gee.2020.10.020
    [9]Fan Zhang, Xiaoying Xu, Zhengpu Qiu, Bo Feng, Yuan Liu, Aihua Xing, Maohong Fan. Improved methanol synthesis performance of Cu/ZnO/Al2O3 catalyst by controlling its precursor structure.  Green Energy&Environment, 2022, 7(4): 772-781. doi: 10.1016/j.gee.2020.11.027
    [10]Shu Shi, Yu-Xia Li, Shuai-Shuai Li, Xiao-Qin Liu, Lin-Bing Sun. Fabrication of Cu+ sites in confined spaces for adsorptive desulfurization by series connection double-solvent strategy.  Green Energy&Environment, 2022, 7(2): 345-351. doi: 10.1016/j.gee.2020.10.009
    [11]Huanhuan Yang, Liguo Wang, Shuang Xu, Yan Cao, Peng He, Jiaqiang Chen, Zheng Zheng, Huiquan Li. Green and selective hydrogenation of aromatic diamines over the nanosheet Ru/g-C3N4-H2 catalyst prepared by ultrasonic assisted impregnation-deposition method.  Green Energy&Environment, 2022, 7(6): 1361-1376. doi: 10.1016/j.gee.2021.01.003
    [12]Kaihang Sun, Zhitao Zhang, Chenyang Shen, Ning Rui, Chang-jun Liu. The feasibility study of the indium oxide supported silver catalyst for selective hydrogenation of CO2 to methanol.  Green Energy&Environment, 2022, 7(4): 807-817. doi: 10.1016/j.gee.2021.05.004
    [13]Yongxing Wang, Tianyu Gao, Yaowei Lu, Yinghao Wang, Qiue Cao, Wenhao Fang. Efficient hydrogenation of furfural to furfuryl alcohol by magnetically recoverable RuCo bimetallic catalyst.  Green Energy&Environment, 2022, 7(2): 275-287. doi: 10.1016/j.gee.2020.09.014
    [14]Xiangyang Zhu, Dong Qiao, Liangrong Yang, Qinling Bi, Huifang Xing, Shan Ni, Menglei Yuan, Huizhou Liu, Luhai Wang, An Ma. Novel magnetic carbon supported molybdenum disulfide catalyst and its application in residue upgrading.  Green Energy&Environment, 2021, 6(6): 952-960. doi: 10.1016/j.gee.2020.06.025
    [15]Shuai Shao, Ying Yang, Shangwei Guo, Shijie Hao, Feng Yang, Suoying Zhang, Yang Ren, Yangchuan Ke. Highly active and stable Co nanoparticles embedded in nitrogen-doped mesoporous carbon nanofibers for aqueous-phase levulinic acid hydrogenation.  Green Energy&Environment, 2021, 6(4): 567-577. doi: 10.1016/j.gee.2020.11.005
    [16]Yuewen Shao, Tingting Wang, Kai Sun, Zhanming Zhang, Lijun Zhang, Qingyin Li, Shu Zhang, Guangzhi Hu, Xun Hu. Competition between acidic sites and hydrogenation sites in Cu/ZrO2 catalysts with different crystal phases for conversion of biomass-derived organics.  Green Energy&Environment, 2021, 6(4): 557-566. doi: 10.1016/j.gee.2020.05.007
    [17]Shenghong Dong, Mingzhe Chen, Jiarui Zhang, Jinzhu Chen, Yisheng Xu. Visible-light-induced hydrogenation of biomass-based aldehydes by graphitic carbon nitride supported metal catalysts.  Green Energy&Environment, 2021, 6(5): 715-724. doi: 10.1016/j.gee.2020.07.004
    [18]Zhaoning Song, Juncong Yuan, Zhenping Cai, Dong Lin, Xiang Feng, Nan Sheng, Yibin Liu, Xiaobo Chen, Xin Jin, De Chen, Chaohe Yang. Engineering three-layer core–shell S-1/TS-1@dendritic-SiO2 supported Au catalysts towards improved performance for propene epoxidation with H2 and O2.  Green Energy&Environment, 2020, 5(4): 473-483. doi: 10.1016/j.gee.2020.11.017
    [19]Dong Lin, Xiuhui Zheng, Xiang Feng, Nan Sheng, Zhaoning Song, Yibin Liu, Xiaobo Chen, Zhenping Cai, De Chen, Chaohe Yang. Enhancing the dynamic electron transfer of Au species on wormhole-like TS-1 for boosting propene epoxidation performance with H2 and O2.  Green Energy&Environment, 2020, 5(4): 433-443. doi: 10.1016/j.gee.2020.10.021
    [20]Etty N. Kusumawati, Takehiko Sasaki. Highly active and stable supported Pd catalysts on ionic liquid-functionalized SBA-15 for Suzuki–Miyaura cross-coupling and transfer hydrogenation reactions.  Green Energy&Environment, 2019, 4(2): 180-189. doi: 10.1016/j.gee.2019.02.003
  • Cited by

    Periodical cited type(44)

    1. Dou, K., Xie, D., Shi, J. et al. Structural characterization of MXene-supported cobalt nanoparticle catalysts and their catalytic performance in the hydrogenation of furfural to furfuryl alcohol. Journal of Molecular Structure, 2025. doi:10.1016/j.molstruc.2024.139518
    2. Zhang, S., He, Y.-C., Ma, C. Transformation of D-xylose into furfuryl alcohol via an efficient chemobiological approach in a benign deep eutectic solvent lactic acid:betaine-water reaction system. Journal of Molecular Liquids, 2024. doi:10.1016/j.molliq.2024.125576
    3. Tian, Y., Xie, W., Yang, Z. et al. Efficient and selective upgrading of biomass-derived furfural into 1, 5 pentanediol by Co2+ etched ZIF-8 derived ZnCo layered double hydroxides nanoflake. Chemical Engineering Journal, 2024. doi:10.1016/j.cej.2024.152669
    4. Sun, W., Ge, X., Du, W. et al. Kinetics and mechanistic insights into selective hydrogenation of furfural to furfuryl alcohol over Ni–Ga intermetallics. AIChE Journal, 2024, 70(6): e18423. doi:10.1002/aic.18423
    5. Li, Y., Shen, Q., Nian, Y. et al. Promoting effect of oxygen vacancies in Co/CoAl2O4 catalyst steered with a straightforward method on hydrogenation of furfural to 2-methylfuran. Applied Catalysis B: Environmental, 2024. doi:10.1016/j.apcatb.2023.123529
    6. Dimitratos, N., Vilé, G., Albonetti, S. et al. Strategies to improve hydrogen activation on gold catalysts. Nature Reviews Chemistry, 2024, 8(3): 195-210. doi:10.1038/s41570-024-00578-2
    7. Kim, Y.E., Lee, K.-Y., Lee, M.S. Morphology-dependent wrinkled silica-supported Pd catalysts for hydrogenation of furfural under mild conditions. Catalysis Today, 2024. doi:10.1016/j.cattod.2023.114392
    8. Xie, Y., Chen, J., Yu, F. et al. Effect of regulators on the catalytic performance of UiO-66 in furfural transfer hydrogenation to furfuryl alcohol | [调节剂对 UiO-66 在糠醛转移加氢制糠醇反应中催化性能的影响]. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2023, 42(11): 5756-5763. doi:10.16085/j.issn.1000-6613.2023-0020
    9. Li, J., Niu, X., Zhu, Y. Synergistic effect of surface Cu0 and Cu+ species on improved selective hydrogenation of furfural to furfuryl alcohol over hydrotalcite-derived CuxMg3Al oxides. Applied Surface Science, 2023. doi:10.1016/j.apsusc.2023.157774
    10. Hu, L., Chen, K., Li, J. et al. Highly selective transfer hydrogenation of biomass-derived furfural to furfuryl alcohol over a zirconium-melamine coordination catalyst without Brønsted acid sites. Chemical Engineering Journal, 2023. doi:10.1016/j.cej.2023.145656
    11. Zhang, W., Wang, Y., Gu, B. et al. Regulating the Interaction within Pd-Cu Dual Metal Sites for Selective Hydrogenation of Furfural Using Ambient H2 Pressure. ACS Sustainable Chemistry and Engineering, 2023, 11(34): 12798-12808. doi:10.1021/acssuschemeng.3c03763
    12. Li, Y., Li, H., Li, K. et al. Roles of Oxygen Vacancies in CeO2 Nanostructures for Catalytic Aerobic Cyclohexane Oxidation. ACS Applied Nano Materials, 2023, 6(15): 14214-14227. doi:10.1021/acsanm.3c02147
    13. Zhang, H., Zhang, R., Zhang, W. et al. Base-free selective oxidation of 5-hydroxymethylfurfural over Pt nanoparticles on surface Nb-enriched Co-Nb oxide. Applied Catalysis B: Environmental, 2023. doi:10.1016/j.apcatb.2023.122670
    14. Li, Y., Chen, S., Jin, Y. et al. The Role of V-Species and O-Species on Controlled-Hydrogen-Reduction VOx Surfaces in Cyclohexane Oxidation. ChemistrySelect, 2023, 8(29): e202301223. doi:10.1002/slct.202301223
    15. Li, F., Yang, R., Du, Z. et al. One pot cascade conversion of furfural to alkyl levulinate over Lu(OTf)3 without external H2. Molecular Catalysis, 2023. doi:10.1016/j.mcat.2023.113315
    16. Wu, S., Shang, R., Zhang, H. et al. Steering the Au−FexCo1Oy interface for efficient imine synthesis at low temperature via oxidative coupling reaction. Molecular Catalysis, 2023. doi:10.1016/j.mcat.2023.113292
    17. Wang, S., Lv, Y., Ren, J. et al. Ultrahigh Selective Hydrogenation of Furfural Enabled by Modularizing Hydrogen Dissociation and Substrate Activation. ACS Catalysis, 2023, 13(13): 8720-8730. doi:10.1021/acscatal.3c01506
    18. Iuliano, M., Ponticorvo, E., Cirillo, C. et al. Catalytic hydrogenation of organic dyes by Ag and Au magnetic nanoparticles supported on nanocellulose from waste pistachio shells. Molecular Catalysis, 2023. doi:10.1016/j.mcat.2023.113179
    19. Sun, R., Tian, Y., Xiao, L. et al. Porous Hollow Nanostructure Promoting the Catalytic Performance and Stability of Ni3P in Furfural Hydrogenation. Industrial and Engineering Chemistry Research, 2023, 62(8): 3525-3537. doi:10.1021/acs.iecr.2c03327
    20. Tian, Y., Feng, Y., Li, Z. et al. Green and efficient selective hydrogenation of furfural to furfuryl alcohol over hybrid CoOx/Nb2O5 nanocatalyst in water. Molecular Catalysis, 2023. doi:10.1016/j.mcat.2023.112981
    21. Di, J., Zhang, L., Tang, Z. et al. A Hybrid Strategy for the Efficient Biosynthesis of Fufuryl Alcohol from Corncob in Formic Acid–Water. Catalysis Letters, 2023, 153(3): 682-688. doi:10.1007/s10562-022-04003-5
    22. Chen, J., Jia, W., Yu, X. et al. Insight into the Co2+/Co3+ sites for the selective reduction of furfural to furfuryl alcohol. Fuel, 2023. doi:10.1016/j.fuel.2022.126137
    23. Ye, L., Han, Y., Zhang, M. et al. Enhanced sorption of carbonyl groups by zirconium hydroxide modified with polydopamine for highly selective production of alcohols via MPV reduction under mild conditions. Fuel, 2023. doi:10.1016/j.fuel.2022.125786
    24. He, A., Dong, L., Xu, N. et al. Complete oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid by a novel enzyme–nanozyme hybrid catalyst. Chemical Engineering Journal, 2022. doi:10.1016/j.cej.2022.137797
    25. Chen, X., Liu, W., Luo, J. et al. Structure Evolution of Ni-Cu Bimetallic Catalysts Derived from Layered Double Hydroxides for Selective Hydrogenation of Furfural to Tetrahydrofurfuryl Alcohol. Industrial and Engineering Chemistry Research, 2022, 61(35): 12953-12965. doi:10.1021/acs.iecr.2c01624
    26. Lin, P., Shang, R., Zhang, Q. et al. One-pot synthesis of finely-dispersed Au nanoparticles on ZnO hexagonal sheets for base-free aerobic oxidation of vanillyl alcohol. Catalysis Science and Technology, 2022, 12(14): 4613-4623. doi:10.1039/d2cy00837h
    27. Li, R., Pan, X., Li, X. et al. Continuous Flow Preparation of 2, 2, 4‑trimethyl‑1, 3‑pentanediol and its Kinetics | [微通道反应器中合成2, 2, 4‑三甲基‑1, 3‑戊二醇的连续流工艺及其动力学]. Hanneng Cailiao/Chinese Journal of Energetic Materials, 2022, 30(5): 424-430. doi:10.11943/CJEM2022019
    28. Quan, Y., Jin, Y., Wang, N. et al. Efficient CuZn/SiO2 lamellar catalysts for methanol dehydrogenation: New insights into the role of zinc. Applied Catalysis A: General, 2022. doi:10.1016/j.apcata.2022.118585
    29. Li, X., Lu, X., Hu, W. et al. Phosphotungstic acid functionalized biochar for furfural production from corncob. Fuel Processing Technology, 2022. doi:10.1016/j.fuproc.2022.107178
    30. Gao, X., Ding, Y., Peng, L. et al. On the effect of zeolite acid property and reaction pathway in Pd–catalyzed hydrogenation of furfural to cyclopentanone. Fuel, 2022. doi:10.1016/j.fuel.2021.123074
    31. Wang, Y., Gao, T., Lu, Y. et al. Efficient hydrogenation of furfural to furfuryl alcohol by magnetically recoverable RuCo bimetallic catalyst. Green Energy and Environment, 2022, 7(2): 275-287. doi:10.1016/j.gee.2020.09.014
    32. An, Z., Li, J. Recent advances in the catalytic transfer hydrogenation of furfural to furfuryl alcohol over heterogeneous catalysts. Green Chemistry, 2022, 24(5): 1780-1808. doi:10.1039/d1gc04440k
    33. Gao, M., Jiang, Z., Ding, W. et al. Selective degradation of hemicellulose into oligosaccharides assisted by ZrOCl2and their potential application as a tanning agent. Green Chemistry, 2022, 24(1): 375-383. doi:10.1039/d1gc03827c
    34. Liu, S., Shang, D., Wang, H. et al. Novel solid acid catalyst for the production of 5-hydroxymethylfurfural with fructose dehydration. Bio-Medical Materials and Engineering, 2022, 33(6): 477-489. doi:10.3233/BME-211385
    35. Liang, J., Ji, L., He, J. et al. Chemoenzymatic Conversion of Biomass-Derived D-Xylose to Furfuryl Alcoholwith Corn Stalk-Based Solid Acid Catalyst and Reductase Biocatalyst in aDeep Eutectic Solvent–Water System. Processes, 2022, 10(1): 113. doi:10.3390/pr10010113
    36. Yan, X., Zhang, G., Zhu, Q. et al. CuZn@N‑doped graphene layer for upgrading of furfural to furfuryl alcohol. Molecular Catalysis, 2022. doi:10.1016/j.mcat.2021.112066
    37. Ahorsu, R., Constanti, M., Medina, F. Recent Impacts of Heterogeneous Catalysis in Biorefineries. Industrial and Engineering Chemistry Research, 2021, 60(51): 18612-18626. doi:10.1021/acs.iecr.1c02789
    38. He, A., Hu, L., Zhang, Y. et al. High-Efficiency Catalytic Transfer Hydrogenation of Biomass-Based 5-Hydroxymethylfurfural to 2, 5-Bis(hydroxymethyl)furan over a Zirconium-Carbon Coordination Catalyst. ACS Sustainable Chemistry and Engineering, 2021, 9(46): 15557-15570. doi:10.1021/acssuschemeng.1c05618
    39. Sun, W., Lin, P., Tang, Q. et al. Sustainable synthesis of vanillin through base-free selective oxidation using synergistic AgPd nanoparticles loaded on ZrO2. Catalysis Science and Technology, 2021, 11(22): 7268-7277. doi:10.1039/d1cy01526e
    40. Wang, Y., Wang, Y., Tang, Q. et al. Efficient activation of H2 on copper species immobilized by MCM-41 for selective hydrogenation of furfural at ambient pressure. Molecular Catalysis, 2021. doi:10.1016/j.mcat.2021.111921
    41. Yang, H., Chen, H., Lin, W. et al. Facile Preparation of Oxygen-Vacancy-Mediated Mn3O4for Catalytic Transfer Hydrogenation of Furfural. Industrial and Engineering Chemistry Research, 2021, 60(27): 9706-9715. doi:10.1021/acs.iecr.1c00985
    42. Vikanova, K., Redina, E., Kapustin, G. et al. Advanced Room-Temperature Synthesis of 2, 5-Bis(hydroxymethyl)furan-A Monomer for Biopolymers-From 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2021, 9(3): 1161-1171. doi:10.1021/acssuschemeng.0c06560
    43. Kumar, P., Khan, M.A., Hu, J. et al. Single-atom catalysts for biomass-derived drop-in chemicals. Advanced Catalysis for Drop-in Chemicals, 2021. doi:10.1016/B978-0-12-823827-1.00009-2
    44. Sun, W., Wu, S., Lu, Y. et al. Effective Control of Particle Size and Electron Density of Pd/C and Sn-Pd/C Nanocatalysts for Vanillin Production via Base-Free Oxidation. ACS Catalysis, 2020, 10(14): 7699-7709. doi:10.1021/acscatal.0c01849

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.2 %FULLTEXT: 26.2 %META: 66.7 %META: 66.7 %PDF: 7.1 %PDF: 7.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.7 %其他: 3.7 %China: 65.5 %China: 65.5 %Seychelles: 2.2 %Seychelles: 2.2 %United States: 28.5 %United States: 28.5 %其他ChinaSeychellesUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (177) PDF downloads(19) Cited by(46)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return