Volume 6 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
Meichen Li, Jie Chen, Ling Li, Changshen Ye, Xiaocheng Lin, Ting Qiu. Novel multi–SO3H functionalized ionic liquids as highly efficient catalyst for synthesis of biodiesel. Green Energy&Environment, 2021, 6(2): 271-282. doi: 10.1016/j.gee.2020.05.004
Citation: Meichen Li, Jie Chen, Ling Li, Changshen Ye, Xiaocheng Lin, Ting Qiu. Novel multi–SO3H functionalized ionic liquids as highly efficient catalyst for synthesis of biodiesel. Green Energy&Environment, 2021, 6(2): 271-282. doi: 10.1016/j.gee.2020.05.004

Novel multi–SO3H functionalized ionic liquids as highly efficient catalyst for synthesis of biodiesel

doi: 10.1016/j.gee.2020.05.004
  • Biodiesel is an attractive alternative to fossil fuels due to the energy and environmental concerns. In this paper, seven different multi –SO3H functionalized ILs based on the low-cost less-substituted amines, which contained massive sites for functionalization of sulfonic acid groups and further treatment of sulfonate-based anions, were prepared as catalysts with high acidity and desirable catalytic activity for the synthesis of biodiesel from the esterification of oleic acid with methanol. The physicochemical properties of these acidic ILs were characterized by a variety of analytical techniques such as FT-IR, EA, TGA, and the Brønsted acidity was well determined by UV–vis. Among the ILs prepared, [EDA-PS][P-TSA] showed the highest catalytic activity for esterification due to its high acidity and appropriate miscibility with reactants, with an ultrahigh 97.58% conversion of oleic acid under the optimum conditions (i.e. reaction time, 1.8 h; catalyst amount, 3 wt%; alcohol/acid molar ratio, 13:1, temperature 70 °C) acquired from the Box–Behnken response surface methodology. With the novel strategy of multi –SO3H modification on ILs, our catalyst had an approaching or even superior oleic acid conversion rate compared to other reported catalysts with considerably lower catalyst dosage and shorter reaction time. More importantly, it also exhibited high generality for converting various FFA feedstocks into biodiesel with considerable conversion within 93.59–94.33% under a rather lower catalyst dosage, which showed the valuable potential for converting low-cost oils into biodiesel from an economic and environmental perspective.

     

  • loading
  • [1]
    P. Yin, L. Chen, Z. Wang, R. Qu, X. Liu, Q. Xu, S. Ren, Fuel 102 (2012) 499-505.
    [2]
    J. Whalen, C. Xu, F. Shen, A. Kumar, M. Eklund, J. Yan, Applied Energy 198 (2017) 281-283.
    [3]
    L. Ma, Y. Han, K. Sun, J. Lu, J. Ding, Energy Conversion and Management 98 (2015) 46-53.
    [4]
    H. Zhang, H. Li, H. Pan, X. Liu, K. Yang, S. Huang, S. Yang, Energy Conversion and Management 138 (2017) 45-53.
    [5]
    M. Olkiewicz, N.V. Plechkova, M.J. Earle, A. Fabregat, F. Stueber, A. Fortuny, J. Font, C. Bengoa, Applied Catalysis B-Environmental 181 (2016) 738-746.
    [6]
    B.R. Vahid, M. Haghighi, Energy Conversion and Management 126 (2016) 362-372.
    [7]
    E.F. Aransiola, T.V. Ojumu, O.O. Oyekola, T.F. Madzimbamuto, D.I.O. Ikhu-Omoregbe, Biomass and Bioenergy 61 (2014) 276-297.
    [8]
    H. Yun, M. Wang, W. Feng, T. Tan, Energy 54 (2013) 84-96.
    [9]
    A.E. Atabani, A.S. Silitonga, I.A. Badruddin, T.M.I. Mahlia, H.H. Masjuki, S. Mekhilef, Renewable & Sustainable Energy Reviews 16 (2012) 2070-2093.
    [10]
    A. Demirbas, Energy Policy 35 (2007) 4661-4670.
    [11]
    J.A. Melero, J. Iglesias, G. Morales, Green Chemistry 11 (2009) 1285-1308.
    [12]
    V. Brahmkhatri, A. Patel, Industrial & Engineering Chemistry Research 50 (2011) 6620-6628.
    [13]
    W. Xie, F. Wan, Fuel 220 (2018) 248-256.
    [14]
    S. Jansri, S.B. Ratanawilai, M.L. Allen, G. Prateepchaikul, Fuel Processing Technology 92 (2011) 1543-1548.
    [15]
    G. Vicente, M. Martinez, J. Aracil, Bioresour Technol 92 (2004) 297-305.
    [16]
    S.H. Dhawane, G.N. Halder, T. Kumar, Energy Conversion & Management 167 (2018) 176-202.
    [17]
    J. Zhang, S. Chen, R. Yang, Y. Yan, Fuel 89 (2010) 2939-2944.
    [18]
    D.A.G. Aranda, R.T.P. Santos, N.C.O. Tapanes, A.L.D. Ramos, O.A.C. Antunes, Catalysis Letters 122 (2008) 20-25.
    [19]
    F.F. Roman, A.E. Ribeiro, A. Queiroz, G.G. Lenzi, E.S. Chaves, P. Brito, Fuel 239 (2019) 1231-1239.
    [20]
    N. Muhammad, Y.A. Elsheikh, M.I.A. Mutalib, A.A. Bazmi, R.A. Khan, H. Khan, S. Rafiq, Z. Man, I. Khan, Journal of Industrial and Engineering Chemistry 21 (2015) 1-10.
    [21]
    Z. Wu, C. Chen, Q. Guo, B. Li, Y. Que, L. Wang, H. Wan, G. Guan, Fuel 184 (2016) 128-135.
    [22]
    A.S. Amarasekara, Chemical Reviews 116 (2016) 6133-6183.
    [23]
    A.S. Amarasekara, B. Wiredu, Industrial & Engineering Chemistry Research 50 (2011) 12276-12280.
    [24]
    H. Olivier-Bourbigou, L. Magna, D. Morvan, Applied Catalysis a-General 373 (2010) 1-56.
    [25]
    X. Liang, Energy 63 (2013) 103-108.
    [26]
    W. Xie, H. Wang, Renewable Energy 145 (2020) 1709-1719.
    [27]
    W. Xie, F. Wan, Chemical Engineering Journal 365 (2019) 40-50.
    [28]
    R.A. Sheldon, R.M. Lau, M.J. Sorgedrager, F.V. Rantwijk, K.R. Seddon, Cheminform 35 (2004) 147-151.
    [29]
    X. Liang, Applied Catalysis a-General 455 (2013) 206-210.
    [30]
    B. Zhen, Q. Jiao, Q. Wu, H. Li, Journal of Energy Chemistry 23 (2014) 97-104.
    [31]
    H. Wan, Z. Wu, W. Chen, G. Guan, Y. Cai, C. Chen, Z. Li, X. Liu, Journal of Molecular Catalysis a-Chemical 398 (2015) 127-132.
    [32]
    D. Fang, J. Yang, C. Jiao, ACS Catalysis 1 (2011) 42-47.
    [33]
    D. Coleman, N. Gathergood, Chemical Society Reviews 39 (2010) 600-637.
    [34]
    X. Lin, X. Ling, J. Chen, M. Li, T. Xu, T. Qiu, Green Chemistry 21 (2019) 3182-3189.
    [35]
    H.B. Xing, T. Wang, Z.H. Zhou, Y.Y. Dai, Industrial & Engineering Chemistry Research 44 (2005) 4147-4150.
    [36]
    Y. Zhao, J. Long, F. Deng, X. Liu, Z. Li, C. Xia, J. Peng, Catalysis Communications 10 (2009) 732-736.
    [37]
    L. Zhang, M. Xian, Y. He, L. Li, J. Yang, S. Yu, X. Xu, Bioresource Technology 100 (2009) 4368-4373.
    [38]
    R. Kore, R. Srivastava, Catalysis Communications 12 (2011) 1420-1424.
    [39]
    X. Liu, M. Liu, X. Guo, J. Zhou, Catalysis Communications 9 (2008) 1-7.
    [40]
    R. Kore, R. Srivastava, Journal of Molecular Catalysis a-Chemical 345 (2011) 117-126.
    [41]
    L. He, S. Qin, T. Chang, Y. Sun, X. Gao, Catalysis Science & Technology 3 (2013) 1102-1107.
    [42]
    V. Kumar, M. Muthuraj, B. Palabhanvi, A.K. Ghoshal, D. Das, Renewable Energy 68 (2014) 560-569.
    [43]
    Z. Wu, Z. Li, G. Wu, L. Wang, S. Lu, L. Wang, H. Wan, G. Guan, Industrial & Engineering Chemistry Research 53 (2014) 3040-3046.
    [44]
    J. Lu, J. Wang, S. Rohani, Crystal Research and Technology 47 (2012) 505-510.
    [45]
    S. Xun, Z. Yu, M. He, Y. Wei, X. Li, M. Zhang, W. Zhu, H. Li, Research on Chemical Intermediates 45 (2019) 4315-4334.
    [46]
    A. Wang, S. Li, H. Chen, Y. Hu, X. Peng, Cellulose 26 (2019) 6849-6859.
    [47]
    M. Nasrollahzadeh, Z. Issaabadi, S.M. Sajadi, RSC Advances 8 (2018) 27631-27644.
    [48]
    S. Palaniappan, European Polymer Journal 37 (2001) 975-981.
    [49]
    W. Li, Y. Wang, Z. Wang, L. Dai, Y. Wang, Catalysis Letters 141 (2011) 1651-1658.
    [50]
    S.P. Satasia, P.N. Kalaria, D.K. Raval, RSC Advances 3 (2013) 3184-3188.
    [51]
    G.P. Pandey, S.A. Hashmi, Journal of Power Sources 187 (2009) 627-634.
    [52]
    J. Cui, F.-M. Nie, J.-X. Yang, L. Pan, Z. Ma, Y.-S. Li, Journal of Materials Chemistry A 5 (2017) 25220-25229.
    [53]
    B.J. Cox, S. Jia, Z.C. Zhang, J.G. Ekerdt, Polymer Degradation and Stability 96 (2011) 426-431.
    [54]
    G. Guan, K. Kusakabe, N. Sakurai, K. Moriyama, Fuel (2009) 88 81-86.
    [55]
    A. Alegria, J. Cuellar, Applied Catalysis B Environmental 179 (2015) 530-541.
    [56]
    Y. Li, S. Hu, J. Cheng, W. Lou, Chinese Journal of Catalysis 35 (2014) 396-406.
    [57]
    Y. Jiang, J. Lu, K. Sun, L. Ma, J. Ding, Energy Conversion and Management 76 (2013) 980-985.
    [58]
    D. Lu, J. Zhao, Y. Leng, P. Jiang, C. Zhang, Catalysis Communications 83 (2016) 27-30.
    [59]
    A.H.M. Fauzi, N.A.S. Amin, Energy Conversion and Management 76 (2013) 818-827.
    [60]
    X. Liang, J. Yang, Green Chemistry 12 (2010) 201-204.
    [61]
    A.H.M. Fauzi, N.A.S. Amin, R. Mat, Applied Energy 114 (2014) 809-818.
    [62]
    T. Liu, Z. Li, W. Li, C. Shi, Y. Wang, Bioresource Technology 133 (2013) 618-621.
    [63]
    L. Zhang, Y. Cui, C. Zhang, L. Wang, H. Wan, G. Guan, Industrial & Engineering Chemistry Research 51 (2012) 16590-16596.
    [64]
    K. Saravanan, B. Tyagi, H.C. Bajaj, Journal of Porous Materials 23 (2016) 937-946.
    [65]
    K. Saravanan, B. Tyagi, R.S. Shukla, H.C. Bajaj, Applied Catalysis B-Environmental 172 (2015) 108-115.
    [66]
    X. Li, W. Eli, Journal of Molecular Catalysis a-Chemical 279 (2008) 159-164.
    [67]
    L. Zatta, L.P. Ramos, F. Wypych, Applied Clay Science 80-81 (2013) 236-244.
    [68]
    C. Wang, X. Gui, Z. Yun, Reaction Kinetics Mechanisms and Catalysis 113 (2014) 211-223.
    [69]
    R. Lamba, S. Kumar, S. Sarkar, Chemical Engineering Communications 205 (2018) 281-294.
    [70]
    K. Saravanan, B. Tyagi, H.C. Bajaj, Journal of Sol-Gel Science and Technology 62 (2012) 13-17.
    [71]
    X.-X. Han, H. Du, C.-T. Hung, L.-L. Liu, P.-H. Wu, D.-H. Ren, S.-J. Huang, S.-B. Liu, Green Chemistry 17 (2015) 499-508.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (181) PDF downloads(11) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return