Volume 6 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
Xiaojiang Hou, Lu Yang, Kaiming Hou, Hongchang Shi, Lei Feng, Guoquan Suo, Xiaohui Ye, Li Zhang, Yanling Yang. Hydrolysis hydrogen production mechanism of Mg10Ni10Ce alloy surface modified by SnO2 nanotubes in different aqueous systems. Green Energy&Environment, 2021, 6(1): 124-137. doi: 10.1016/j.gee.2020.05.003
Citation: Xiaojiang Hou, Lu Yang, Kaiming Hou, Hongchang Shi, Lei Feng, Guoquan Suo, Xiaohui Ye, Li Zhang, Yanling Yang. Hydrolysis hydrogen production mechanism of Mg10Ni10Ce alloy surface modified by SnO2 nanotubes in different aqueous systems. Green Energy&Environment, 2021, 6(1): 124-137. doi: 10.1016/j.gee.2020.05.003

Hydrolysis hydrogen production mechanism of Mg10Ni10Ce alloy surface modified by SnO2 nanotubes in different aqueous systems

doi: 10.1016/j.gee.2020.05.003
  • (Mg-10wt%Ni)-10wt%Ce (Mg10Ni10Ce) was ball-milled with SnO2 nanotubes and Mg10Ni10Ce-xSnO2 (x = 0, 5, 10 and 15 wt%) composites have been prepared. The phase compositions, microstructures, morphologies and hydrolysis H2 generation performance in different aqueous systems (distilled water, tap water and simulated seawater) have been investigated and the corresponding hydrolysis mechanism of Mg10Ni10Ce and Mg10Ni10CeSnO2 has been proposed. Adding a small amount of SnO2 nanotubes can significantly enhance the hydrolysis reaction of Mg10Ni10Ce, especially the initial hydrolysis kinetics and the final H2 generation yield. Unfortunately, the Mg10Ni10Ce-xSnO2 hardly reacts with distilled water at room temperature. The hydrolysis reaction rate of Mg10Ni10Ce5SnO2 composite in tap water is still very slow with only 17.3% generation yield after 1 h at 303 K. Fortunately, in simulated seawater (3.5 wt% NaCl solution), the hydrolytic H2 generation behavior of the Mg10Ni10Ce5SnO2 composite has been greatly improved, which can release as high as 468.6 mL g−1 H2 with about 60.9% generation yield within 30 s at 303 K. The Cl destroys the passivation layer on MgNiCe alloy surface and the added SnO2 nanotubes accelerate the hydrolysis reaction rate and enhance the H2 generation yield. The Mg10Ni10Ce5SnO2 composite can rapidly generate a large amount of H2 in simulated seawater in a short time, which is expected to be applied on portable H2 generators in the future.

     

  • • SnO2 can promote rapid hydrolysis H2 production of Mg10Ni10Ce with high yield. • Mg10Ni10Ce5SnO2 release 468.6 mL g–1 with 60.9% yield within 30 s at 303 K. • Catalytic H2 generation mechanism in different aqueous systems is proposed. • Seawater is proved to be the optimal aqueous system for hydrolysis H2 generation.
  • loading
  • [1]
    J.E. Hoffmann, On the outlook for solar thermal hydrogen production in South Africa, Int. J Hydrogen Energy 44 (2019) 629-640.
    [2]
    X. Lin, Q. Zhu, H. Leng, H. Yang, T. Lyu, Q. Li, Numerical analysis of the effects of particle radius and porosity on hydrogen absorption performances in metal hydride tank, Appl Energy 250 (2019) 1065-1072.
    [3]
    Q. Luo, J. Li, B. Li, B. Liu, H. Shao, Q. Li, Kinetics in Mg-based hydrogen storage materials: Enhancement and mechanism, J Magnes Alloys 7 (2019) 58-71.
    [4]
    H. Cheng, Y. Zhang, X. Lu, W. Ding, Q. Li, Hydrogen production from simulated hot coke oven gas by using oxygen-permeable ceramics, Energ Fuel 23 (2009) 414-421.
    [5]
    X.Q. Hao, H. Yang, Z.L. Jin, J. Xu, S.X. Min, G.X. Lu, Acta Phys-Chim Sin 32 (2016) 2581-2592.
    [6]
    S. Satyapal, J. Petrovic, C. Read, G. Thomas, G. Ordaz, The U.S. Department of Energy's National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements, Catal Today 120 (2007) 246-256.
    [7]
    X. Hou, R. Hu, Y. Yang, L. Feng, Isothermal activation, thermodynamic and hysteresis of MgH2 hydrides catalytically modified by high-energy ball milling with MWCNTs and TiF3, Int. J Hydrogen Energy 42 (2017) 22953-22964.
    [8]
    R. Mohtadi, S.I. Orimo, The renaissance of hydrides as energy materials, Nature reviews mater 2 (2017) 16091.
    [9]
    J. Liu, H. Wang, Q. Yuan, X. Song, A novel material of nanoporous magnesium for hydrogen generation with salt water, J Power Sources 395 (2018) 8-15.
    [10]
    M. Huang, L. Ouyang, J. Liu, H. Wang, H. Shao, M. Zhu, Enhanced hydrogen generation by hydrolysis of Mg doped with flower-like MoS 2 for fuel cell applications, J Power Sources 365 (2017) 273-281.
    [11]
    X. Hou, R. Hu, Y. Yang, L. Feng, G. Suo, Modification based on internal refinement and external decoration: A powerful strategy for superior thermodynamics and hysteresis of Mg-Ni hydrogen energy storage alloys, J. Alloys Compd 766 (2018) 112-122.
    [12]
    X. Hou, R. Hu, T. Zhang, H. Kou, J. Li, Hydrogenation thermodynamics of melt-spun magnesium rich Mg-Ni nanocrystalline alloys with the addition of multiwalled carbon nanotubes and TiF3, J Power Sources 306 (2016) 437-447.
    [13]
    B. Lin, H. An, X. Yan, T. Zhang, J. Wei, G. Yang, Appl Catal B Environ 210 (2017) 45-56.
    [14]
    G.W. Crabtree, M.S. Dresselhaus, M.V. Buchanan, The hydrogen economy, Phys Today 57 (2004) 39-44.
    [15]
    F. Shi, X. Zhu, W. Yang, Chinese J Catal 40 (2019) 390-403.
    [16]
    L. Zhang, X. Hao, J. Li, Y. Wang, Z. Jin, Chinese J Catal 41 (2020) 82-94.
    [17]
    X. Hou, Y. Wang, Y. Yang, R. Hu, G. Yang, L. Feng, G. Suo, X. Ye, L. Zhang, H. Shi, L. Yang, Z.-G. Chen, Enhanced hydrogen generation behaviors and hydrolysis thermodynamics of as-cast Mg-Ni-Ce magnesium-rich alloys in simulate seawater, International J Hydrogen Energy 44 (2019) 24086-24097.
    [18]
    S. Sengodan, R. Lan, J. Humphreys, D. Du, W. Xu, H. Wang, S. Tao, Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications, Renew Sust Energy Rev 82 (2018) 761-780.
    [19]
    B. Tahir, M. Tahir, N.A.S. Amin, Ag-La loaded protonated carbon nitrides nanotubes (pCNNT) with improved charge separation in a monolithic honeycomb photoreactor for enhanced bireforming of methane (BRM) to fuels, Appl Catal B: Environ 248 (2019) 167-183.
    [20]
    U.B. Demirci, P. Miele, Sodium borohydride versus ammonia borane, in hydrogen storage and direct fuel cell applications, Energy Environ Sci 2 (2009) 627-637.
    [21]
    M. Mahyari, A. Shaabani, Nickel nanoparticles immobilized on three-dimensional nitrogen-doped graphene as a superb catalyst for the generation of hydrogen from the hydrolysis of ammonia borane, J Mater Chem A 2 (2014) 16652-16659.
    [22]
    H. Su, Y.F. Xu, S.C. Feng, Z.G. Wu, X.P. Sun, C.H. Shen, J.Q. Wang, J.T. Li, L. Huang, S.G. Sun, Hierarchical Mn2O3 Hollow Microspheres as Anode Material of Lithium Ion Battery and its Conversion Reaction Mechanism Investigated by XANES, ACS Appl Mater Inter 7 (2015) 8488-8494.
    [23]
    L. Yang, J. Su, X. Meng, W. Luo, G. Cheng, In situ synthesis of graphene supported Ag@ CoNi core-shell nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane and methylamine borane, J Mater Chem A 1 (2013) 10016-10023.
    [24]
    P. Liu, H. Wu, C. Wu, Y. Chen, Y. Xu, X. Wang, Y. Zhang, Microstructure characteristics and hydrolysis mechanism of Mg-Ca alloy hydrides for hydrogen generation, Int. J Hydrogen Energy 40 (2015) 3806-3812.
    [25]
    Y. Ersoz, R. Yildirim, A.N. Akin, Development of an active platine-based catalyst for the reaction of H2 production from NaBH4, Chem Eng J 134 (2007) 282-287.
    [26]
    X. Huang, T. Gao, X. Pan, D. Wei, C. Lv, L. Qin, Y. Huang, A review: Feasibility of hydrogen generation from the reaction between aluminum and water for fuel cell applications, J Power Sources 229 (2013) 133-140.
    [27]
    Y. Jia, J. Shen, H. Meng, Y. Dong, Y. Chai, N. Wang, Hydrogen generation using a ball-milled Al/Ni/NaCl mixture, J Alloys Compds 588 (2014) 259-264.
    [28]
    P. Brack, S.E. Dann, K.G.U. Wijayantha, P. Adcock, S. Foster, Synthesis of activated ferrosilicon-based microcomposites by ball milling and their hydrogen generation properties, Int. J Hydrogen Energy 44 (2019) 19113-19127.
    [29]
    S. Al Bacha, A.S. Awad, E. El Asmar, T. Tayeh, J.L. Bobet, M. Nakhl, M. Zakhour, Hydrogen generation via hydrolysis of ball milled WE43 magnesium waste, Int. J Hydrogen Energy 44 (2019) 17515-17524.
    [30]
    H. Uesugi, T. Sugiyama, H. Nii, T. Ito, I. Nakatsugawa, Industrial production of MgH2 and its application, J Alloys Compds 509 (2011) S650-S653.
    [31]
    H. Liu, Q. Wu, G. Han, F. Yao, Y. Kojima, S. Suzuki, Compatibilizing and toughening bamboo flour-filled HDPE composites: Mechanical properties and morphologies, Composites Part A: Appl Sci Manuf 39 (2008) 1891-1900.
    [32]
    A. Kanturk Figen, M.B. Piskin, B. Coskuner, V. Imamoglu, Synthesis, structural characterization, and hydrolysis of Ammonia Borane (NH3BH3) as a hydrogen storage carrier, Int. J Hydrogen Energy 38 (2013) 16215-16228.
    [33]
    S. Qian, M. Zou, X. Guo, R. Yang, H. Huang, H. Peng, X. He, A study of hydrogen generation by reaction of an activated Mg-CoCl2 (magnesium-cobalt chloride) composite with pure water for portable applications, Energy 79 (2015) 310-314.
    [34]
    X. Xie, C. Ni, B. Wang, Y. Zhang, X. Zhao, L. Liu, B. Wang, W. Du, Recent advances in hydrogen generation process via hydrolysis of Mg-based materials: A short review, J Alloys Compds 816 (2020) 152634.
    [35]
    Y. Liu, X. Wang, Z. Dong, H. Liu, S. Li, H. Ge, M. Yan, Hydrogen generation from the hydrolysis of Mg powder ball-milled with AlCl3, Energy 53 (2013) 147-152.
    [36]
    X.N. Huang, C. J. Lv, Y. Wang, H. Y. Shen, D. Chen, Y. X. Huang, Hydrogen generation from hydrolysis of aluminum/graphite composites with a core-shell structure, Int. J Hydrogen Energy 37 (2012) 7457-7463.
    [37]
    Y. Yang, D. Zhang, Q. Xiang, Plasma-modified Ti3C2Tx/CdS hybrids with oxygen-containing groups for high-efficiency photocatalytic hydrogen production, Nanoscale 11 (2019) 18797-18805.
    [38]
    Y. Zhang, X. Tong, L. Yu, L. Meng, P. Guo, S. Xue, Highly efficient catalytic valorization of biomass-derived hexoses and furfuryl alcohol in the presence of polymer-based catalysts, Green Energy Environ 4 (2019) 424-431.
    [39]
    X. Wang, H. Liu, C. Dong, X. Meng, T. Liu, C. Fu, N. Hao, Y. Zhang, X. Wu, J. Ren, Multifunctional Fe3O4@P(St/MAA)@Chitosan@Au Core/Shell Nanoparticles for Dual Imaging and Photothermal Therapy, Appl Mater Inter 5 (2013) 4966-4971.
    [40]
    J. He, J. Wu, S. Hu, H. Shen, X. Hu, A low-cost flexible broadband photodetector based on SnO2/CH3NH3PbI3 hybrid structure, Opt Mater 88 (2019) 689-694.
    [41]
    S. Huang, N. Ali, Z. Huai, J. Ren, Y. Sun, X. Zhao, G. Fu, W. Kong, S. Yang, A facile strategy for enhanced performance of inverted organic solar cells based on low-temperature solution-processed SnO2 electron transport layer, Org Electron (2019) 105555.
    [42]
    J. Wang, M. Liu, M. Wang, Y. Wang, A. Zhang, X. Zhao, G. Zeng, F. Deng, Green Energy Environ 4 (2019) 264-269.
    [43]
    P. Kalisman, Y. Nakibli, L. Amirav, Perfect Photon-to-Hydrogen Conversion Efficiency, Nano Lett 16 (2016) 1776-1781.
    [44]
    H. Dotan, N. Mathews, T. Hisatomi, M. Graetzel, A. Rothschild, On the Solar to Hydrogen Conversion Efficiency of Photoelectrodes for Water Splitting, J Phys Chem Lett 5 (2014) 3330-3334.
    [45]
    F. Zhang, K. Edalati, M. Arita, Z. Horita, Hydrolytic Hydrogen Production on Al-Sn-Zn Alloys Processed by High-Pressure Torsion, Materials 11 (2018) 1209.
    [46]
    M. Q. Fan, F. Xu, L. X. Sun, Studies on hydrogen generation characteristics of hydrolysis of the ball milling Al-based materials in pure water, Int. J Hydrogen Energy 32 (2007) 2809-2815.
    [47]
    X. Hou, Y. Wang, Y. Yang, R. Hu, G. Yang, L. Feng, G. Suo, Microstructure evolution and controlled hydrolytic hydrogen generation strategy of Mg-rich Mg-Ni-La ternary alloys, Energy 188 (2019) 116081.
    [48]
    J. Shou Xun, G. Feng, F. Zhong Yun, Thermodynamics Calculation of Extra Mn Addition in the Recycling of Al-Si-Cu Aluminium Alloys, Mate Sci Forum 877 (2017) 33-38.
    [49]
    J. Cui, H.J. Roven, Recycling of automotive aluminum, T Nonferr Metal 20 (2010) 2057-2063.
    [50]
    Heuer, A., A. R. Cox. Collids and surfaces: A physicochemical and engineering aspects, Colloids Surfaces A 347(1) 2010) 104-108.
    [51]
    X. An, S. Guo, J. Su, Q. Hu, W. Zhu, L. Liu, Y. Zhang, G. Liu, Enhanced Ethanol Sensing Performance of ZnO-SnO2 Heterostructure Nanotubes, Sci Adv Mater 11 (2019) 360-365.
    [52]
    L. Huang, D. Li, J. Liu, L. Yang, C. Dai, N. Ren, Y. Feng, Construction of TiO2 nanotube clusters on Ti mesh for immobilizing Sb-SnO2 to boost electrocatalytic phenol degradation, J hazardous mater 393 (2020) 122329-122329.
    [53]
    Y. Jing, F. Li, Y. Li, P. Jin, S. Zhu, C. He, J. Zhao, Z. Zhang, Q. Zhang, Statistical optimization of simultaneous saccharification fermentative hydrogen production from corn stover, Bioengineered 11 (2020) 428-438.
    [54]
    Z. Zhu, C. Wang, L. Liang, D. Yu, J. Sun, L. Zhang, S. Zhong, B. Liu, Synthesis of Novel Ternary Photocatalyst Ag3PO4/Bi2WO6/Multi-Walled Carbon Nanotubes and Its Enhanced Visible-Light Photoactivity for Photodegradation of Norfloxacin, J Nanosci Nanotech 20 (2020) 2247-2258.
    [55]
    M. Devi, A. Kumar, Surface modification of reduced graphene oxide-polyaniline nanotubes nanocomposites for improved supercapacitor electrodes, Polymer Composite 41(2) (2020) 653-667.
    [56]
    W. Du, L. Wu, J. Zhao, W. Si, F. Wang, J. Liu, W. Liu, Engineering the surface structure of porous indium oxide hexagonal nanotubes with antimony trioxide for highly-efficient nitrogen dioxide detection at low temperature, Appl Surf Sci 484 (2019) 853-863.
    [57]
    D. Huang, H. Liu, J. Bian, T. Li, B. Huang, Q. Niu, High Specific Surface Area TiO2 Nanospheres for Hydrogen Production and Photocatalytic Activity, J Nanosci Nanotech 20 (2020) 3217-3224.
    [58]
    Z.L Jin, Y.B Li, X.Q Hao. Ni, Co-Based Selenide Anchored g-C3N4 for Boosting Photocatalytic Hydrogen Evolution. Acta Phys-Chim Sin, 36 (2020) 1912033.
    [59]
    B.P. Luscher, L. Vachel, E. Ohana, S. Muallem, Cl- as a bona fide signaling ion, Am J Phys-Cell Phys 318 (2020) C125-C136.
    [60]
    A. Dehghani, F. Poshtiban, G. Bahlakeh, B. Ramezanzadeh, Fabrication of metal-organic based complex film based on three-valent samarium ions- bis (phosphonomethyl) amino methylphosphonic acid (ATMP) for effective corrosion inhibition of mild steel in simulated seawater, Constr Build Mater 239 (2020) 117812.
    [61]
    F. Ashrafi, M. Firouzzare, S.J. Ahmadi, M.R. Sohrabi, M. Khosravi, Preparation and modification of forcespun polypropylene nanofibers for adsorption of uranium (VI) from simulated seawater, cotox Enviro Safe 186 (2019) 109746.
    [62]
    M. Ramezanzadeh, G. Bahlakeh, B. Ramezanzadeh, Study of the synergistic effect of Mangifera indica leaves extract and zinc ions on the mild steel corrosion inhibition in simulated seawater: Computational and electrochemical studies, J Mol Liq 292 (2019).
    [63]
    J.T. Konstantin W. Scheihing, Matthew Weaver,Matthias Schoniger., A strategy to enhance management of free basic water via communal taps in South Africa, Util Policy 64 (2020) 245-246.
    [64]
    P. Liu, H. Wu, C. Wu, Y. Chen, Y. Xu, X. Wang, Y. Zhang, Microstructure characteristics and hydrolysis mechanism of Mg-Ca alloy hydrides for hydrogen generation, Int. J Hydrogen Energy 40 (2015) 3806-3812.
    [65]
    L. Escobar-Alarcon, J.L. Iturbe-Garcia, F. Gonzalez-Zavala, D.A. Solis-Casados, R. Perez-Hernandez, E. Haro-Poniatowski, Hydrogen production by ultrasound assisted liquid laser ablation of Al, Mg and Al-Mg alloys in water, Appl Surf Sci478 (2019) 189-196.
    [66]
    O.V. Kravchenko, L.G. Sevastyanova, S.A. Urvanov, B.M. Bulychev, Formation of hydrogen from oxidation of Mg, Mg alloys and mixture with Ni, Co, Cu and Fe in aqueous salt solutions, Int. J Hydrogen Energy 39 (2014) 5522-5527.
    [67]
    X. Hou, Y. Wang, R. Hu, H. Shi, L. Feng, G. Suo, X. Ye, L. Zhang, Y. Yang, Catalytic effect of EG and MoS2 on hydrolysis hydrogen generation behavior of high-energy ball-milled Mg-10wt.%Ni alloys in NaCl solution-A powerful strategy for superior hydrogen generation performance, Int. J Energy Res 43 (2019) 8426-8438.
    [68]
    M. Huang, L. Ouyang, J. Ye, J. Liu, X. Yao, H. Wang, H. Shao, M. Zhu, Hydrogen generation via hydrolysis of magnesium with seawater using Mo, MoO2, MoO3 and MoS2 as catalysts, J Mater Chem A 5 (2017) 8566-8575.
    [69]
    J. Jiang, L. Ouyang, H. Wang, J. Liu, H. Shao, M. Zhu, Controllable Hydrolysis Performance of MgLi Alloys and Their Hydrides, Chemphyschem 20 (2019) 1316-1324.
    [70]
    X. Zhang, Z. Leng, M. Gao, J. Hu, F. Du, J. Yao, H. Pan, Y. Liu, Enhanced hydrogen storage properties of MgH2 catalyzed with carbon-supported nanocrystalline TiO2, J Power Sources 398 (2018) 183-192.
    [71]
    L.Z. Ouyang, Y.J. Xu, H.W. Dong, L.X. Sun, M. Zhu, Production of hydrogen via hydrolysis of hydrides in Mg-La system, Int. J Hydrogen Energy 34 (2009) 9671-9676.
    [72]
    Y. Xu, C. Wu, Y. Chen, Z. Huang, L. Luo, H. Wu, P. Liu, Hydrogen generation behaviors of NaBH4-NH3BH3 composite by hydrolysis, J Power Sources 261 (2014) 7-13.
    [73]
    M. Ma, L. Yang, L. Ouyang, H. Shao, M. Zhu, Promoting hydrogen generation from the hydrolysis of Mg-Graphite composites by plasma-assisted milling, Energy 167 (2019) 1205-1211.
    [74]
    B. Yang, J. Zou, T. Huang, J. Mao, X. Zeng, W. Ding, Enhanced hydrogenation and hydrolysis properties of core-shell structured Mg-MOx (M = Al, Ti and Fe) nanocomposites prepared by arc plasma method, Chem Eng J 371 (2019) 233-243.
    [75]
    S. L. Li, J. M. Song, J. Y. Uan, Mg-Mg2X (X=Cu, Sn) eutectic alloy for the Mg2X nano-lamellar compounds to catalyze hydrolysis reaction for H2 generation and the recycling of pure X metals from the reaction wastes, J Alloys Compds 772 (2019) 489-498.
    [76]
    S. Oh, T. Cho, M. Kim, J. Lim, K. Eom, D. Kim, E. Cho, H. Kwon, Fabrication of Mg-Ni-Sn alloys for fast hydrogen generation in seawater, Int. J Hydrogen Energy 42 (2017) 7761-7769.
    [77]
    T.S. Lim, H.S. Ryu, S.-H. Hong, Electrochemical corrosion properties of CeO2-containing coatings on AZ31 magnesium alloys prepared by plasma electrolytic oxidation, Corros Sci 62 (2012) 104-111.
    [78]
    Y. J. Feng, L. Wei, X. B. Chen, M. C. Li, Y. F. Cheng, Q. Li, Unexpected cathodic role of Mg41Sm5 phase in mitigating localized corrosion of extruded Mg-Sm-Zn-Zr alloy in NaCl solution, Corros Sci 159 (2019) 108133.
    [79]
    G. Wu, J. Zhang, Y. Wu, Q. Li, K. Chou, X. Bao, Adsorption and dissociation of hydrogen on MgO surface: A first-principles study, J Alloys Compds 480 (2009) 788-793.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (228) PDF downloads(15) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return