Volume 6 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
Li Cui, Lijuan Wang, Ming Feng, Li Fang, Yanxia Guo, Fangqin Cheng. Ion-pair induced solvent extraction of lithium (I) from acidic chloride solutions with tributyl phosphate. Green Energy&Environment, 2021, 6(4): 607-616. doi: 10.1016/j.gee.2020.05.002
Citation: Li Cui, Lijuan Wang, Ming Feng, Li Fang, Yanxia Guo, Fangqin Cheng. Ion-pair induced solvent extraction of lithium (I) from acidic chloride solutions with tributyl phosphate. Green Energy&Environment, 2021, 6(4): 607-616. doi: 10.1016/j.gee.2020.05.002

Ion-pair induced solvent extraction of lithium (I) from acidic chloride solutions with tributyl phosphate

doi: 10.1016/j.gee.2020.05.002
  • Lithium (Li) is an important energy metal in the 21st century. However, the selective recovery of Li is still a big challenge, especially from acidic solutions with multiple metal ions existence. Herein we report a new ion pair induced mechanism for selectively extracting Li+ from acidic chloride solutions by tributyl phosphate (TBP). It is shown that the acidity and the chloride ions in the aqueous phase have great effects on the extraction of Li+. The FT-IR, UV-Vis and ESI-MS experiments provide solid evidence for the formation of ion-pair complex [Li(TBP)n(H2O)m]+[FeCl4]- (n = 1, 2, 3; m = 0, 1) in the organic phase, which brings about the effective and efficient extraction of Li+. This mechanism can overcome the Hofmeister bias and allow for the selective extraction of Li+ from the extremely hydrophilic chlorides. It has also been proved that the loaded Li in TBP can be effectively stripped by concentrated HCl solution with a Li/Fe separation factor > 500. The understanding of the ion-pair transport mechanism is helpful for optimizing the recovery process or further advancing more efficient recovery techniques for Li from acidic liquor.

     

  • loading
  • [1]
    X. Ji, Y. Yu, H. Fan, Green Energy Environ. 3(2018) 1.
    [2]
    Y. Liu, X. Liu, G. Ye, Y. Song, F. Liu, X. Huo, J. Chen, Dalton Trans. 46(2017) 6117-6127.
    [3]
    P. Meshram, B.D. Pandey, T.R. Mankhand, Hydrometallurgy 150(2014) 192-208.
    [4]
    L. Li, J. Ge, F. Wu, R. Chen, S. Chen, B. Wu, J. Hazard. Mater. 176(2010) 288-293.
    [5]
    Y. Yang, X. Meng, H. Cao, X. Lin, C. Liu, Y. Sun, Y. Zhang, Z. Sun, Green Chem. 20(2018) 3121-3133.
    [6]
    R. Zheng, W. Wang, Y. Dai, Q. Ma, Y. Liu, D. Mu, R. Li, J. Ren, C. Dai, Green Energy Environ. 2(2017) 42-50.
    [7]
    H. Li, S. Xing, Y. Liu, F. Li, H. Guo, G. Kuang, ACS Sustain. Chem. Eng. 5(2017) 8017-8024.
    [8]
    X. Zhang, L. Li, E. Fan, Q. Xue, Y. Bian, F. Wu, R. Chen, Chem. Soc. Rev. 47(2018) 7239-7302.
    [9]
    H. Zou, E. Gratz, D. Apelian, Y. Wang, Green Chem. 15(2013) 1183-1191.
    [10]
    F. Pagnanelli, E. Moscardini, P. Altimari, T.A. Atia, L. Toro, Waste Manag. 51(2016) 214-221.
    [11]
    J. Xiao, S. Sun, X. Song, P. Li, J. Yu, Chem. Eng. J. 279(2015) 659-666.
    [12]
    Y. Pranolo, Z. Zhu, C. Cheng, Hydrometallurgy 154(2015) 33-39.
    [13]
    S. Tsuchiya, Y. Nakatani, R. Ibrahim, S. Ogawa, J. Am. Chem. Soc. 124(2002) 4936-4937.
    [14]
    S. Yang, F. Zhang, H. Ding, P. He, H. Zhou, Joule 2(2018) 1648-1651.
    [15]
    Z. Hao, H. Fei, Q. Hao, L. Lian, Acta Geol. Sin. 90(2016) 751-752.
    [16]
    X. Wei, S. Liang, Z. Zhou, Q. Wei, W. Fei, Hydrometallurgy 166(2016) 9-15.
    [17]
    X. Wei, S. Liang, Z. Zhou, Q. Wei, W. Fei, Hydrometallurgy 171(2017) 27-32.
    [18]
    H. Li, L. Li, X. Peng, L. Ji, W. Li, Chin. J. Chem. Eng. (2019) 335-340.
    [19]
    Z. Zhou, Q. Wei, S. Liang, Y. Tan, W. Fei, Ind. Eng. Chem. Res. 51(2012) 12926-12932.
    [20]
    D. Shi, B. Cui, L. Li, X. Peng, L. Zhang, Y. Zhang, Separ. Purif. Technol. 211(2019) 303-309.
    [21]
    Z. Zhou, W. Qin, Y. Liu, W. Fei, J. Chem. Eng. Data 57(2012) 82-86.
    [22]
    T.V. Hoogerstraete, S. Wellens, K. Verachtert, K. Binnemans, Green Chem. 15(2013) 919-927.
    [23]
    D. Kogelniga, A. Stojanovic, F. Jirsa, W. Körner, R. Krachler, B.K. Keppler, Separ. Purif. Technol. 72(2010) 56-60.
    [24]
    J. Wang, H. Yao, Y. Nie, X. Zhang, J. Li, J. Mol. Liq. 169(2012) 152-155.
    [25]
    Z. Zhou, W. Qin, W. Fei, J. Chem. Eng. Data 56(2011) 3518-3522.
    [26]
    D.F.C. Morris, E.L. Short, D.N. Slater, Electrochim. Acta 8(1963) 289-300.
    [27]
    Q. Wei, X. Ren, J. Guo, Y. Chen, J. Hazard. Mater. 304(2016) 1-9.
    [28]
    L. Cui, F. Cheng, J. Zhou, Ind. Eng. Chem. Res. 54(2015) 7534-7542.
    [29]
    W. Liu, B. Etschmann, J. Brugger, L. Spiccia, G. Foran, B. Mcinnes, Chem. Geol. 231(2006) 326-349.
    [30]
    L. Cui, K. Jiang, J. Wang, K. Dong, X. Zhang, F. Cheng, AIChE J. l65(2019) e16606.
    [31]
    R.D. Rogers, Y. Song, J. Chem. Crystallogr. 25(1995) 579-582.
    [32]
    M.J.Y. Gong, S. Xia, J. Hangzhou Univ. (1988) 46-54.
    [33]
    Y. Liu, F. Liu, G. Ye, N. Pu, F. Wu, Z. Wang, X. Huo, J. Xu, J. Chen, Dalton Trans. 45(2016) 16492-16504.
    [34]
    W. Zhou, X. Sun, L. Gu, F. Bao, X. Xu, C. Pang, Z. Gu, Z. Li, J. Radioanal. Nucl. Chem. 300(2014) 843-852.
    [35]
    S.B. Rempe, L.R. Pratt, G. Hummer, J.D. Kress, R.L. Martin, A. Redondo, J. Am. Chem. Soc. 122(2000) 966-967.
    [36]
    A. Boda, S.M. Ali, H. Rao, S.K. Ghosh, J. Mol. Model. 18(2012) 3507-3522.
    [37]
    C. Shi, D. Duan, Y. Jia, Y. Jing, J. Mol. Liq. 200(2014) 191-195.
    [38]
    A. Rout, K. Binnemans, Dalton Trans. 44(2015) 1379-1387.
    [39]
    C. Shi, Y. Jing, Y. Jia, J. Mol. Liq. 215(2016) 640-646.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (176) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return