Volume 6 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
Huihong Zhu, Zhiwei Mao, Bin Liu, Tao Yang, Xiang Feng, Hao Jin, Chong Peng, Chaohe Yang, Jifeng Wang, Xiangchen Fang. Regulating catalyst morphology to boost the stability of Ni–Mo/Al2O3 catalyst for ebullated-bed residue hydrotreating. Green Energy&Environment, 2021, 6(2): 283-290. doi: 10.1016/j.gee.2020.05.001
Citation: Huihong Zhu, Zhiwei Mao, Bin Liu, Tao Yang, Xiang Feng, Hao Jin, Chong Peng, Chaohe Yang, Jifeng Wang, Xiangchen Fang. Regulating catalyst morphology to boost the stability of Ni–Mo/Al2O3 catalyst for ebullated-bed residue hydrotreating. Green Energy&Environment, 2021, 6(2): 283-290. doi: 10.1016/j.gee.2020.05.001

Regulating catalyst morphology to boost the stability of Ni–Mo/Al2O3 catalyst for ebullated-bed residue hydrotreating

doi: 10.1016/j.gee.2020.05.001
  • Hydrotreating of vacuum residue by ebullated-bed shows tremendous significance due to more stringent environmental regulations and growing demand for lighter fuels. However, enhancing the catalyst stability still remains as a challenging task. Herein, two Ni–Mo/Al2O3 catalysts with distinct morphologies (i.e., spherical and cylindrical) were first designed, and the morphology effect on deactivation was systematically elucidated employing multi-characterizations, such as HRTEM with EDX mapping, electron microprobe analysis, FT-IR, TGA and Raman. It is found that spherical catalyst exhibits superior hydrotreating stability over 1600 h. The carbonaceous deposits on spherical catalyst with less graphite structure are lighter, and the coke weight is also smaller. In addition, the metal deposits uniformly distribute in the spherical catalyst, which is better than the concentrated distribution near the pore mouth for the cylindrical catalyst. Furthermore, the intrinsic reason for the differences was analyzed by the bed expansion experiment. Higher bed expansion rate together with the better mass transfer ability leads to the enhanced performance. This work sheds new light on the design of more efficient industrial hydrotreating catalyst based on morphology effect.

     

  • loading
  • [1]
    S.-H. Kim, K.-D. Kim, Y.-K. Lee, J. Catal. 347 (2017) 127-137.
    [2]
    A. Marafi, H. Albazzaz, M.S. Rana, Catal. Today 329 (2019) 125-134.
    [3]
    S. Gudiyella, L. Lai, I.H. Borne, G.A. Tompsett, M.T. Timko, K.H. Choi, M.H. Alabsi, W.H. Green, AIChE J. 64 (2018) 1732-1743.
    [4]
    K.S. Go, S.H. Lim, Y.K. Kim, E.H. Kwon, N.S. Nho, Catal. Today 305 (2018) 92-101.
    [5]
    Y. Shi, G. Ye, C. Yang, Y. Tang, C. Peng, G. Qian, W. Yuan, X. Duan, X. Zhou, Chem. Eng. Sci. 202 (2019) 336-346.
    [6]
    R. Dinkov, K. Kirilov, D. Stratiev, I. Sharafutdinov, D. Dobrev, D. Nguyen-Hong, S. Chapot, J.-F. Le-Coz, A. Burilkova, D. Bakalova, D. Yordanov, S. Smilkov, Ind. Eng. Chem. Res. 57 (2018) 2003-2013.
    [7]
    A. Quitian, Y. Fernandez, J. Ancheyta, Chem. Eng. Tech. 42 (2019) 148-155.
    [8]
    Y. Shi, C. Yang, X. Zhao, Y. Cao, G. Qian, M. Lu, G. Ye, C. Peng, B. Sui, Z. Lv, W. Yuan, X. Duan, X. Zhou, Ind. Eng. Chem. Res. 58 (2019) 9829-9837.
    [9]
    X. Liu, Y. Zhang, Z. Wang, B. Zhang, Z. Yao, Z. Wang, X. Li, H. Wang, M. Hu, Chem. Eng. J. 346 (2018) 600-605.
    [10]
    J. Martinez, J.L. Sanchez, J. Ancheyta, R.S. Ruiz, Catal. Rev. 52 (2010) 60-105.
    [11]
    D. Stratiev, I. Shishkova, A. Nedelchev, E. Nikolaychuk, I. Sharafutdinov, R. Nikolova, M. Mitkova, D. Yordanov, Z. Belchev, N. Rudnev, Fuel Process. Tech. 143 (2016) 213-218.
    [12]
    Z.-M. Cheng, Z.-B. Huang, T. Yang, J.-K. Liu, H.-L. Ge, L.-J. Jiang, X.-C. Fang, Catal. Today 220 (2014) 228-236.
    [13]
    J. Liu, X. Fang, T. Yang, Energy Fuels 31 (2017) 6568-6579..
    [14]
    K. Al-Dalama, A. Stanislaus, Chem. Eng. J. 120 (2006) 33-42.
    [15]
    M. Absi-Halabi, A. Stanislaus, D. Trimm, Appl. Catal. 72 (1991) 193-215.
    [16]
    J. Ancheyta, G. Betancourt, G. Centeno, G. Marroquin, F. Alonso, E. Garciafigueroa, Energy Fuels 16 (2002) 1438-1443.
    [17]
    V. Samano, M. S.Rana, J. Ancheyta, Catal. Comm., 133 (2020) 105823.
    [18]
    G. Centeno, J. Ancheyta, A. Alvarez, G. Marroquin, F. Alonso, A. Castillo, Fuel, 100 (2012) 73-79.
    [19]
    S. Maity, E. Blanco, J. Ancheyta, F. Alonso, H. Fukuyama, Fuel, 100 (2012) 17-23.
    [20]
    P. Torres-Mancera, J. Ancheyta, J. Martinez, Fuel, 234 (2018) 326-334.
    [21]
    R.G. Tailleur, L. Caprioli, Catal. Today 109 (2005) 185-194.
    [22]
    M. Macias, J. Ancheyta, Catal. Today 98 (2004) 243-252.
    [23]
    S. Suhua, W. Gang, F. Xiangchen, Z. Huihong, L. Jie, Y. Guang, Petroleum Refinery Eng. 12 (2011) 26-30.
    [24]
    C. Peng, R. Guo, X. Feng, X. Fang, Chem. Eng. J. 377 (2019) 119706.
    [25]
    J. Ancheyta, M.S. Rana, E. Furimsky, Catal. Today 109 (2005) 3-15.
    [26]
    M.F. Ali, S. Abbas, Fuel Process. Tech. 87 (2006) 573-584.
    [27]
    J. Zhou, Z. Hua, Z. Liu, W. Wu, Y. Zhu, J. Shi, Acs Catal. 1 (2011) 287-291.
    [28]
    L.D. Rollmann, J. Catal. 47 (1977) 113-121.
    [29]
    J. Spence, M. Vahrman, J. Appl. Chem. 17 (1967) 143-146.
    [30]
    F.W. Kirsch, J.D. Potts, D.S. Barmby, J. Catal. 27 (1972) 142-150.
    [31]
    H. Zhu, X. Wang, F. Wang, G. Yu, Energy Fuels 32 (2018) 1320-1327.
    [32]
    D. Wang, J. Zhang, J. Sun, W. Gao, Y. Cui, Int. J. Hydr. Energy 44 (2019) 7205-7215.
    [33]
    B. Ananthoju, R.K. Biroju, W. Theis, R.A. Dryfe, Small (2019) 1901555.
    [34]
    J.M. Smolsky, A.V. Krasnoslobodtsev, Nano Res. 11 (2018) 6346-6359.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (138) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return