Wan Chen, Xiaonan Guo, Enbao Zou, Mengling Luo, Mengzijing Chen, Mingke Yang, Hai Li, Chongzhi Jia, Chun Deng, Changyu Sun, Bei Liu, Lanying Yang, Guangjin Chen. A continuous and high-efficiency process to separate coal bed methane with porous ZIF-8 slurry: Experimental study and mathematical modelling. Green Energy&Environment, 2020, 5(3): 347-363. doi: 10.1016/j.gee.2020.04.015
Citation: Wan Chen, Xiaonan Guo, Enbao Zou, Mengling Luo, Mengzijing Chen, Mingke Yang, Hai Li, Chongzhi Jia, Chun Deng, Changyu Sun, Bei Liu, Lanying Yang, Guangjin Chen. A continuous and high-efficiency process to separate coal bed methane with porous ZIF-8 slurry: Experimental study and mathematical modelling. Green Energy&Environment, 2020, 5(3): 347-363. doi: 10.1016/j.gee.2020.04.015

A continuous and high-efficiency process to separate coal bed methane with porous ZIF-8 slurry: Experimental study and mathematical modelling

doi: 10.1016/j.gee.2020.04.015
  • Coal bed methane has been considered as an important energy resource. One major difficulty of purifying coal bed methane comes from the similar physical properties of CH4 and N2. The ZIF-8/water-glycol slurry was used as a medium to separate coal bed methane by fluidifying the solid adsorbent material. The sorption equilibrium experiment of binary mixture (CH4/N2) and slurry was conducted. The selectivity of CH4 to N2 is within the range of 2–6, which proved the feasibility of the slurry separation method. The modified Langmuir equation was used to describe the gas-slurry phase equilibrium behavior, and the calculated results were in good agreement with the experimental data. A continuous absorption–adsorption and desorption process on the separation of CH4/N2 in slurry is proposed and its mathematical model is also developed. Sensitivity analysis is conducted to determine the operation conditions and the energy performance of the proposed process was also evaluated. Feed gas contains 30 mol% of methane and the methane concentration in product gas is 95.46 mol% with the methane recovery ratio of 90.74%. The total energy consumption for per unit volume of product gas is determined as 1.846 kWh Nm−3. Experimental results and process simulation provide basic data for the design and operation of pilot and industrial plant.

     

  • Wan Chen and Xiaonan Guo contributed equally to this work.
  • loading
  • [1]
    D.M. Ruthven , Ind. & Eng. Chem. Res. 39 (2000) 2127-2131.
    [2]
    G.B. Zhang, Fan, S. S. , Lang, X. M. , & Wang, Y. H. , Adv. Mater. Res. (2012) 403-408.
    [3]
    E. Kouvelos, K. Kesore, T. Steriotis, H. Grigoropoulou, D. Bouloubasi, N. Theophilou, S. Tzintzos, N. Kanelopoulos, Micropor. Mesopor. Mat. 99 (2007) 106-111.
    [4]
    R.T. Yang , Gas Separation By Adsorption Processes, Imperial College Press, London 1997.
    [5]
    Z. Sumer, & Keskin, S. , Ind. & Eng. Chem. Res. 56 (2017) 8713-8722.
    [6]
    X. Yang, Z. Li, C. Zhang, H. Wang, E. Zhang, Y. Xing, P. Xiao, R.T. Yang, Y. Liu, P.A. Webley, Chem. Eng. J. 367 (2019) 295-303.
    [7]
    Q. Sun, X. Guo, A. Liu, B. Liu, Y. Huo, G. Chen, Ind. & Eng. Chem. Res. 50 (2011) 2284-2288.
    [8]
    K.S. Park, Z. Ni, A.P. Cote, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O'keeffe, O.M. Yaghi, Proceedings of the National Academy of Sciences of the United States of America 103 (2006) 10186-10191.
    [9]
    B. Liu, And B. Smit . Langmuir 25 (2009) 5918-5926.
    [10]
    A. Battisti, S. Taioli, G. Garberoglio, Micropor. Mesopor. Mat. 143 (2011) 46-53.
    [11]
    B. Liu, & Smit, B. , J.Phys.Chem.C. 114 (2016) 8515-8522.
    [12]
    A. Bhunia, I. Boldog, A. Moller, C. Janiak, J. Mater. Chem. A. 1 (2013) 14990-14999.
    [13]
    Z. Niu, Cui, X. , Pham, T. , Lan, P. C. , & Ma, S. , Angew. Chem. Int. Ed. 58 (2019) 10138-10141.
    [14]
    L. Li, L. Yang, J. Wang, Z. Zhang, Q. Yang, Q. Ren, Z. Bao, AICHE J. 64 (2018) 3681-3689.
    [15]
    T. Yan, Y. Lan, D. Liu, Q. Yang, C. Zhong, Chem Asian J 14 (2019) 3688-3693.
    [16]
    Y. Chen, H. Wu, Y. Yuan, D. Lv, Z. Qiao, D. An, X. Wu, H. Liang, Z. Li, Q. Xia, Chem. Eng. J. 385 (2020) 123836.
    [17]
    M. Xu, S. Deng, J Colloid Interface Sci 565 (2020) 131-141.
    [18]
    H. Liu, B. Liu, L.C. Lin, G. Chen, Y. Wu, J. Wang, X. Gao, Y. Lv, Y. Pan, X. Zhang, X. Zhang, L. Yang, C. Sun, B. Smit, W. Wang, Nat. commun. 5 (2014) 5147-5153.
    [19]
    H. Li, W. Chen, B. Liu, C. Jia, Z. Qiao, C. Sun, L. Yang, Q. Ma, G. Chen, Chem. Eng. Sci. 182 (2018) 189-199.
    [20]
    H. Liu, Y. Pan, B. Liu, C. Sun, P. Guo, X. Gao, L. Yang, Q. Ma, G. Chen, Sci. Rep. 6 (2016) 21114-21125.
    [21]
    W. Chen, E. Zou, J.Y. Zuo, M. Chen, M. Yang, H. Li, C. Jia, B. Liu, C. Sun, C. Deng, Q. Ma, L. Yang, G. Chen, Ind. & Eng. Chem. Res. 58 (2019) 9997-10006.
    [22]
    S. Yan, D. Zhu, Z. Zhang, H. Li, G. Chen, B. Liu, Appl. Energ. 248 (2019) 104-114.
    [23]
    H. Li, B. Liu, M. Yang, D. Zhu, Z. Huang, W. Chen, L. Yang, G. Chen, Ind. & Eng. Chem. Res. 59 (2020) 6154-6163.
    [24]
    W. Chen, M. Chen, M. Yang, E. Zou, H. Li, C. Jia, C. Sun, Q. Ma, G. Chen, H. Qin, Appl. Energ. 240 (2019) 265-275.
    [25]
    S. Verma, A.K. Mishra, J. Kumar, Accounts Chem. Res. 43 (2010) 79-91.
    [26]
    L.R.P. Zhang K , Zhang C , R.R. Chance, W.J. Koros, D.S. Sholl, S. Nair, J. Phy. Chem. Letters 4 (2013) 3618-3622.
    [27]
    P.A. Banerjee R , Wang B, C. Knobler, H. Furukawa, M. O'Keeffe, O.M. Yaghi, Science 319 (2008) 939-943.
    [28]
    L.Y. Xu S , Zeng X , Et Al., Chem. Eng. J. 323 (2017) 502-511.
    [29]
    T.a.S. Patel N C Chem. Eng. Sci. 37 (1982) 463-473.
    [30]
    E.J. H. J. D. Seader, D. Keith Roper, Separation Process Principles-Chemical and Biochemical Operations, Third Edition edn.John Wiley & Sons, New York 2010.
    [31]
    K. Zhang, R.P. Lively, C. Zhang, R.R. Chance, W.J. Koros, D.S. Sholl, S. Nair, J. Phy. Chem. Letters 4 (2013) 3618-3622.
    [32]
    J.L. Hu, T.J. Sun, X.Y. Ren, L.P. Chang, S.D. Wang, J. Fuel Chem. Technol. 41 (2013) 754-760.
    [33]
    M.A. Abdi, Hussain, A. , Hawboldt, K. , & Beronich, E. , J. Chem. Eng. Data 52 (2007) 1741-1746.
    [34]
    J.B. James, Wang, J. , Meng, L. , & Lin, J. Y. S. , Ind. & Eng. Chem. Res. 56 (2017) 7567-7575.
    [35]
    L. Zhang, Qian, G., Liu, Z., Cui, Q., Wang, H., & Yao, H. , Sep. Purif. Technol. 156 (2015) 472-479.
    [36]
    Y. He, C. Song, Y. Ling, C. Wu, R. Krishna, B. Chen, APL Mater. 2 (2014) 124102.
    [37]
    C. Y. Wang, W. Zhang, J. F. Chen, L. Xiao, Mining Safety & Environmental Protection, 38 (2011) 1-3
    [38]
    Q. Y. Li, L. Wang, Y. L. Ju, Natural Gas Industry, 31 (2011) 99-102+132-133
    [39]
    M. xu, s. g. deng, J. Colloid. Interf. Sci. 565 (2020) 131-141
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (184) PDF downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return