Volume 6 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
Ying Liu, Jian-guo Guo, Yue Wang, Ying-juan Hao, Rui-hong Liu, Fa-tang Li. One-step synthesis of defected Bi2Al4O9/β-Bi2O3 heterojunctions for photocatalytic reduction of CO2 to CO. Green Energy&Environment, 2021, 6(2): 244-252. doi: 10.1016/j.gee.2020.04.014
Citation: Ying Liu, Jian-guo Guo, Yue Wang, Ying-juan Hao, Rui-hong Liu, Fa-tang Li. One-step synthesis of defected Bi2Al4O9/β-Bi2O3 heterojunctions for photocatalytic reduction of CO2 to CO. Green Energy&Environment, 2021, 6(2): 244-252. doi: 10.1016/j.gee.2020.04.014

One-step synthesis of defected Bi2Al4O9/β-Bi2O3 heterojunctions for photocatalytic reduction of CO2 to CO

doi: 10.1016/j.gee.2020.04.014
  • Defect and charge transfer efficiency of nano-photocatalysts are important factors which influence their photocatalytic performance. In this work, oxygen vacancies are successfully introduced in the synthesis process of Bi2Al4O9/β-Bi2O3 heterojunctions through one-step in situ self-combustion method. High-resolution transmission electron microscopy (HRTEM), UV-Vis diffuse reflectance spectra (UV-Vis DRS), and electron spin resonance (ESR) measurements confirm the existence of oxygen vacancies. In addition, by controlling the ratio of reactants of Bi(NO3)3 to Al(NO3)3, the ratio of Bi2Al4O9 and β-Bi2O3 in the heterojunction can be easily adjusted. Photocurrent responses and surface photovoltage spectroscopy (SPV) indicate that the construction of the Bi2Al4O9/β-Bi2O3 heterostructure improves the separation efficiency of the photo-generated electrons and holes. CO2-TPD results imply that the amounts and stability of heterojunctions are enhanced compared with their counterparts. The Bi2Al4O9/β-Bi2O3 heterojunction with 14 mol% Bi2Al4O9 shows the highest photocatalytic ability for reduction of CO2 into CO. The enhanced photoreduction of CO2 performance can be ascribed to the synergistic effects of the heterojunction for electron separation and oxygen vacancies for CO2 activation.

     

  • loading
  • [1]
    P. Zhang, X.W. Lou, Adv. mater. 31 (2019) 1900281.
    [2]
    L.B. Xiao, R.B. Lin, J. Wang, C. Cui, J.Y. Wang, Z.Q. Li, J. Colloid Interface Sci. 523 (2018) 151-158.
    [3]
    P. Zhang, X.W. Lou, Adv. mater. 31 (2019) 1900281.
    [4]
    C. Steinlechner, H. Junge, Angew. Chem. Int. Ed. 57 (2018) 44-45.
    [5]
    C. Li, Z. Wang, Nanoscale Res. Lett. 12 (2017) 530.
    [6]
    J. Xiao, W. Yang, S. Gao, C. Sun, Q. Li, J. Mater. Sci. Technol. 34 (2018) 2331-2336.
    [7]
    X. Li, J. Wen, J. Low, Y. Fang, J. Yu, Sci. China Mater. 57 (2014) 70-100.
    [8]
    G. Guo, H. Guo, F. Wang, L.J. France, W. Yang, Z. Mei, Y. Yu, Green Energy Environ. 5 (2020) 114-120.
    [9]
    Q. Hao, R. Wang, H. Lu, C. Xie, W. Ao, D. Chen, C. Ma, W. Yao, Y. Zhu, Appl. Catal. B Environ. 219 (2017) 63-72.
    [10]
    Z. Chen, J. Zeng, J. Di, D. Zhao, M. Ji, J. Xia, H. Li, Green Energy Environ. 2 (2017) 124-133.
    [11]
    Z. Jiang, X. Liang, H. Zheng, Y. Liu, Z. Wang, P. Wang, X. Zhang, X. Qin, Y. Dai, M. Whangbo, B. Huang, Appl. Catal. B Environ. 219 (2017) 209-215.
    [12]
    J. Hou, S. Cao, Y. Wu, F. Liang, Y. Sun, Z. Lin, L. Sun, Nanomater. Energy 32 (2017) 359-366.
    [13]
    L. Ye, Y. Deng, L. Wang, H. Xie, F. Su, ChemSusChem 12 (2019) 3671-3701.
    [14]
    S. Jiao, Y. Zhao, C. Li, B. Wang, Y. Qu, Green Energy Environ. 4 (2019) 66-74.
    [15]
    L. Zhang, W. Wang, J. Yang, Z. Chen, W. Zhang, L. Zhou, S. Liu, Appl. Catal. Gen. 308 (2006) 105-110.
    [16]
    X. Xiao, R. Hu, C. Liu, C. Xing, C. Qian, X. Zuo, J. Nan, L. Wang, Appl. Catal. B Environ. 140-141 (2013) 433-443.
    [17]
    H. Schneider, R. X. Fischer, T. M. Gesing, J. Schreuer, M. Muhlberg, Int. J. Mater. Res. 103 (2012) 449-455.
    [18]
    L. Zhang, G. Wang, Z. Xiong, H. Tang, C. Jiang, Appl. Surf. Sci. 436 (2018) 162-171.
    [19]
    A. Hameed, T. Montini, V. Gombac, P. Fornasiero, J. Am. Chem. Soc. 130 (2008) 9658-9659.
    [20]
    H. J. Liu, P. Chen, X. Y. Yuan, Y. X. Zhang, H. W. Huang, L. A. Wang, F. Dong, Chin. J. Catal. 40 (2019) 620-630.
    [21]
    B. Zhang, L. Wang, Y. Zhang, Y. Ding, Y. Bi, Angew. Chem. Int. Ed. 57 (2018) 2248-2252.
    [22]
    M. L. Sun, W. D. Zhang, Y. J. Sun, Y. X. Zhang, F. Dong, Chin. J. Catal. 40 (2019) 826-836.
    [23]
    Y. Yang, L.C. Yin, Y. Gong, P. Niu, J.Q. Wang, L. Gu, X. Chen, G. Liu, L. Wang, H.M. Cheng, Adv. Mater. 30 (2018) 1704479.
    [24]
    C. Liu, X. Zhu, P. Wang, Y. Zhao, Y. Ma, J. Mater. Sci. Technol. 34 (2018) 931-941.
    [25]
    S. Hosseini, J. Mater. Sci. Mater. Electron. 27 (2016) 6517-6521.
    [26]
    S. Rahnamaeiyan, R. Talebi, J. Mater. Sci. Mater. Electron. 27 (2015) 304-309.
    [27]
    Z. Wan, G. Zhang, J. Wang, Y. Zhang, RSC Adv.. 3 (2013) 19617.
    [28]
    E. Zahedi, B. Xiao, M. Shayestefar, Inorg. Chem. 55 (2016) 4824-4835.
    [29]
    J.G. Guo, Y. Liu, Y.J. Hao, Y.L. Li, X.J. Wang, R.H. Liu, F.T. Li, Appl. Catal. B Environ. 224 (2018) 841-853.
    [30]
    F.T. Li, Y. Zhao, Y.J. Hao, X.J. Wang, R.H. Liu, D.S. Zhao, D.M. Chen, J. Hazard Mater. 239-240 (2012) 118-127.
    [31]
    F.T. Li, J.R, Ran, M. Jaroniec, S.Z. Qiao, Nanoscale 7 (2015) 17590-17610.
    [32]
    A. Kumar, E. Wolf, A. Mukasyan, AIChE J.. 57 (2011) 2207-2214.
    [33]
    Y. Hong, C. Li, B. Yin, D. Li, Z. Zhang, B. Mao, W. Fan, W. Gu, W. Shi, Chem. Eng. J. 338 (2018) 137-146.
    [34]
    X.J. Wang, Y. Zhao, F.T. Li, L.J. Dou, Y.P. Li, J. Zhao, Y.J. Hao, Sci. Rep. 6 (2016) 24918.
    [35]
    F.T. Li, Q. Wang, J.R. Ran, Y.J. Hao, X.J. Wang, D.S. Zhao, S.Z. Qiao, Nanoscale 7 (2015) 1116-1126.
    [36]
    J.P. Wang, Z.Y. Wang, B.B. Huang, Y.D. Ma, Y.Y. Liu, X.Y. Qin, X.Y. Zhang, Y. Dai, ACS Appl. Mater. Interfaces 4 (2012) 4024-4030.
    [37]
    Y.C. Huang, H.B. Li, M.S. Balogun, W.Y. Liu, Y.X. Tong, X.H. Lu, H.B. Ji, ACS Appl. Mater. Interfaces 6 (2014) 22920−22927.
    [38]
    T. Li, G. Chen, C. Zhou, Z. Shen, R. Jin, J. Sun, Dalton Trans.. 40 (2011) 6751-6758.
    [39]
    H.Y. Mu, F.T. Li, X.T. An, R.H. Liu, Y. Li, X. Qian, Y.Q. Hu, Phys. Chem. Chem. Phys. 19 (2017) 9392-9401.
    [40]
    Q. Wang, W. Wang, L. Zhong, D. Liu, X. Cao, F. Cui, Appl. Catal. B Environ. 220 (2018) 290-302.
    [41]
    K. Xie, N. Umezawa, N. Zhang, P. Reunchan, Y. Zhang, J. Ye, Energy Environ. Sci. 4 (2011) 4211-4219.
    [42]
    H. Maimaiti, A. Awati, G. Yisilamu, D. Zhang, S. Wang, Appl. Surf. Sci. 466 (2019) 535-544.
    [43]
    M. Khan, S. Ansari, D. Pradhan, M. Ansari, D. Han, J. Lee, M. Cho, J. Mater. Chem. 2 (2014) 637-644.
    [44]
    S. Li, L. Hou, L. Zhang, L. Chen, Y. Lin, D. wang, T. Xie, J. Mater. Chem. 3 (2015) 17820-17826.
    [45]
    T. Jiang, T. Xie, Y. Zhang, L. Chen, L. Peng, H. Li, D. Wang, Phys. Chem. Chem. Phys. 12 (2010) 15476-15481.
    [46]
    S. Zhou, Y. Liu, J. Li, Y. Wang, G. Jiang, Z. Zhao, D. Wang, A. Duan, J. Liu, Y. Wei, Appl. Catal. B Environ. 158 (2014) 20-29.
    [47]
    Y. Liu, S. Zhou, J. Li, Y. Wang, G. Jiang, Z. Zhao, B. Liu, X. Gong, A. Duan, J. Liu, Y. Wei, L. Zhang, Appl. Catal. B Environ. 168 (2015) 125-131.
    [48]
    J. Wang, F.E. Osterloh, J. Mater. Chem. 2 (2014) 9405-9411.
    [49]
    W. Pipornpong, R. Wanbayor, V. Ruangpornvisuti, Appl. Surf. Sci. 257 (2011) 10322-10328.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (224) PDF downloads(15) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return