Chenglong Qiu, Yinbin Wang, Yuejin Li, Xiang Sun, Guilin Zhuang, Zihao Yao, Shengwei Deng, Jianguo Wang. A generalized formula for two-dimensional diffusion of CO in graphene nanoslits with different Pt loadings. Green Energy&Environment, 2020, 5(3): 322-332. doi: 10.1016/j.gee.2020.04.012
Citation: Chenglong Qiu, Yinbin Wang, Yuejin Li, Xiang Sun, Guilin Zhuang, Zihao Yao, Shengwei Deng, Jianguo Wang. A generalized formula for two-dimensional diffusion of CO in graphene nanoslits with different Pt loadings. Green Energy&Environment, 2020, 5(3): 322-332. doi: 10.1016/j.gee.2020.04.012

A generalized formula for two-dimensional diffusion of CO in graphene nanoslits with different Pt loadings

doi: 10.1016/j.gee.2020.04.012
  • Catalytic performance of supported metal catalysts not only depends on the reactivity of metal, but also the adsorption and diffusion properties of gas molecules which are usually affected by many factors, such as temperature, pressure, properties of metal clusters and substrates, etc. To explore the impact of each of these macroscopic factors, we simulated the movement of CO molecules confined in graphene nanoslits with or without supported Pt nanoparticles. The results of molecular dynamics simulations show that the diffusion of gas molecules is accelerated with high temperature, low pressure or low surface-atom number of supported metals. Notably, the supported metal nanoparticles greatly affect the gas diffusion due to the adsorption of gas molecules. Furthermore, to bridge a quantitative relationship between microscopic simulation and macroscopic properties, a generalized formula is derived from the simulation data to calculate the diffusion coefficient. This work helps to advise the diffusion modulation of gas molecules via structural design of catalysts and regulation of reaction conditions.

     

  • loading
  • [1]
    C. Tang, S.Z. Qiao, Chem. Soc. Rev. 48 (2019) 3166-3180.
    [2]
    L. Huazhang, L. Caibo, L. Xiaonian, C. Yaqing, Ind. Eng. Chem. Res. 42 (2003) 1347-1349.
    [3]
    M. Liu, Z. Zhao, X. Duan, Y. Huang, Adv. Mater. 31 (2019) e1802234.
    [4]
    Z. Jiang, W. Sun, H. Shang, W. Chen, T. Sun, H. Li, J. Dong, J. Zhou, Z. Li, Y. Wang, R. Cao, R. Sarangi, Z. Yang, D. Wang, J. Zhang, Y. Li, Energy Environ. Sci. 12 (2019) 3508-3514.
    [5]
    D.D. Zhu, J.L. Liu, S.Z. Qiao, Adv. Mater. 28 (2016) 3423-3452.
    [6]
    D. Gao, H. Zhou, F. Cai, J. Wang, G. Wang, X. Bao, ACS Catal.. 8 (2018) 1510-1519.
    [7]
    T.W. van Deelen, C. Hernandez Mejia, K.P. de Jong, Nat. Catal. 2 (2019) 955-970.
    [8]
    Z. Wei, Z. Yao, Q. Zhou, G. Zhuang, X. Zhong, S. Deng, X. Li, J. Wang, ACS Catal.. 9 (2019) 10656-10667.
    [9]
    Z. Jin, L. Wang, E. Zuidema, K. Mondal, M. Zhang, J. Zhang, C. Wang, X. Meng, H. Yang, C. Mesters, Science 367 (2020) 193-197.
    [10]
    H. Li, C. Qiu, S. Ren, Q. Dong, S. Zhang, F. Zhou, X. Liang, J. Wang, S. Li, M. Yu, Science 367 (2020) 667-671.
    [11]
    W. Chen, J. Ji, X. Feng, X. Duan, G. Qian, P. Li, X. Zhou, D. Chen, W. Yuan, J. Am. Chem. Soc. 136 (2014) 16736-16739.
    [12]
    J. Qian, M. Shen, S. Zhou, C.-T. Lee, M. Zhao, Z. Lyu, Z.D. Hood, M. Vara, K.D. Gilroy, K. Wang, Y. Xia, Mater. Today 21 (2018) 834-844.
    [13]
    J. Yue, Z. Du, M. Shao, J. Phys. Chem. Lett. 6 (2015) 3346-3351.
    [14]
    X.Y. Liu, A. Wang, T. Zhang, C.-Y. Mou, Nano Today 8 (2013) 403-416.
    [15]
    M. Ahmadi, H. Mistry, B. Roldan Cuenya, J. Phys. Chem. Lett. 7 (2016) 3519-3533.
    [16]
    B. Shao, W. Zhao, S. Miao, J. Huang, L. Wang, G. Li, W. Shen, Chin. J. Catal. 40 (2019) 1534-1539.
    [17]
    A. Bruix, J.A. Rodriguez, P.J. Ramirez, S.D. Senanayake, J. Evans, J.B. Park, D. Stacchiola, P. Liu, J. Hrbek, F. Illas, J. Am. Chem. Soc. 134 (2012) 8968-8974.
    [18]
    X. Yang, S. Kattel, S.D. Senanayake, J.A. Boscoboinik, X. Nie, J. Graciani, J.A. Rodriguez, P. Liu, D.J. Stacchiola, J.G. Chen, J. Am. Chem. Soc. 137 (2015) 10104-10107.
    [19]
    J. Xie, R. Jin, A. Li, Y. Bi, Q. Ruan, Y. Deng, Y. Zhang, S. Yao, G. Sankar, D. Ma, J. Tang, Nat. Catal. 1 (2018) 889-896.
    [20]
    J.C. Maxwell, P. Roy. Soc. London 15 (1866) 167-171.
    [21]
    E.N. Fuller, P.D. Schettler, J.C. Giddings, Ind. Eng. Chem. Res. 58 (1966) 18-27.
    [22]
    R. Krishna, Chem. Eng. Sci. 164 (2017) 63-70.
    [23]
    R.J. Verploegh, S. Nair, D.S. Sholl, J. Am. Chem. Soc. 137 (2015) 15760-15771.
    [24]
    F. Oulebsir, R. Vermorel, G. Galliero, Langmuir 34 (2018) 561-571.
    [25]
    O. Suarez-Iglesias, I. Medina, C. Pizarro, J.L. Bueno, Chem. Eng. Sci. 62 (2007) 6499-6515.
    [26]
    Y. Elbaz, D. Furman, M. Caspary Toroker, Adv. Funct. Mater. (2019) 1900778.
    [27]
    J. Feng, P. Chen, D. Zheng, W. Zhong, Physica A 493 (2018) 155-161.
    [28]
    M.H. Kohler, L.B. da Silva, Chem. Phys. Lett. 645 (2016) 38-41.
    [29]
    W. Cao, L. Huang, M. Ma, L. Lu, X. Lu, J. Phys. Chem. C 122 (2018) 19124-19132.
    [30]
    S. Jiao, Z. Xu, ACS Appl. Mater. Interfaces 7 (2015) 9052-9059.
    [31]
    C. Sun, B. Bai, Phys. Chem. Chem. Phys. 19 (2017) 3894-3902.
    [32]
    S. Plimpton, J. Comput. Phys. 117 (1995) 1-19.
    [33]
    C. Qiu, C. Zhao, X. Sun, S. Deng, G. Zhuang, X. Zhong, Z. Wei, Z. Yao, J.G. Wang, Langmuir 35 (2019) 6393-6402.
    [34]
    J.R. Michalka, A.P. Latham, J.D. Gezelter, J. Phys. Chem. C 120 (2016) 18180-18190.
    [35]
    M.S. Daw, M.I. Baskes, Phys. Rev. B 29 (1984) 6443-6453.
    [36]
    B.H. Morrow, A. Striolo, Phys. Rev. B 81 (2010).
    [37]
    B. Buesser, S.E. Pratsinis, J. Phys. Chem. C 119 (2015) 10116-10122.
    [38]
    J.E. Straub, M. Karplus, Chem.l Phys. 158 (1991) 221-248.
    [39]
    R.J. Abraham, R. Stolevik, Chem. Phys. Lett. 58 (1978) 622-624.
    [40]
    G. Kresse, J. Hafner, Phys. Rev. B 47 (1993) 558-561.
    [41]
    P.E. Blochl, Phys. Rev. B 50 (1994) 17953-17979.
    [42]
    G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758-1775.
    [43]
    K. Levenberg, Q. Appl. Math. 2 (1944) 164-168.
    [44]
    D.W. Marquardt, J. Soc. Ind. Appl. Math. 11 (1963) 431-441.
    [45]
    S.E. Mason, I. Grinberg, A.M. Rappe, Phys. Rev. B 69 (2004).
    [46]
    P. van Beurden, H.G.J. Verhoeven, G.J. Kramer, B.J. Thijsse, Phys. Rev. B 66 (2002).
    [47]
    M. Jafary-Zadeh, C.D. Reddy, Y.-W. Zhang, Chem. Phys. Lett. 570 (2013) 70-74.
    [48]
    H. Zhou, X. Chen, J. Wang, Int. J. Quant. Chem. 116 (2016) 939-944.
    [49]
    E.R. Gilliland, Ind. Eng. Chem. Res. 26 (1934) 681-685.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (155) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return