Volume 6 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
Pengfei Liu, Christian Marcus Pedersen, Jiaojiao Zhang, Rui Liu, Zhenzhou Zhang, Xianglin Hou, Yingxiong Wang. Ternary deep eutectic solvents catalyzed d-glucosamine self-condensation to deoxyfructosazine: NMR study. Green Energy&Environment, 2021, 6(2): 261-270. doi: 10.1016/j.gee.2020.04.010
Citation: Pengfei Liu, Christian Marcus Pedersen, Jiaojiao Zhang, Rui Liu, Zhenzhou Zhang, Xianglin Hou, Yingxiong Wang. Ternary deep eutectic solvents catalyzed d-glucosamine self-condensation to deoxyfructosazine: NMR study. Green Energy&Environment, 2021, 6(2): 261-270. doi: 10.1016/j.gee.2020.04.010

Ternary deep eutectic solvents catalyzed d-glucosamine self-condensation to deoxyfructosazine: NMR study

doi: 10.1016/j.gee.2020.04.010
  • Ternary deep eutectic solvents (TDESs) comprising choline chloride (ChCl), glycerol and l-arginine were synthesized as catalysts and solvents for the conversion of d-glucosamine (GlcNH2) into deoxyfructosazine (DOF). The interactions between these three components in the prepared TDESs were studied by 1H-, 35Cl-NMR spectra and 1H diffusion-ordered spectroscopy (DOSY) measurements. The chemical shift changes of active hydrogen in the 1H-NMR spectra of TDES system and widening of signals in the 35Cl-NMR spectra confirmed the hydrogen bonding interaction between the components, which was further supported by the decrease of diffusion coefficients (D) of the TDES components according to 1H DOSY measurements. The influences of reaction temperature and l-arginine content in the TDESs on the yield of DOF were also studied. The experimental results have shown that when the molar ratio of ChCl, glycerol, and l-arginine was 1:2:0.1, DOF was the major product with a yield of 22.6% at 90 °C for 120 min. The chemical shift titration indicated that the carboxyl group of l-arginine in the TDES is the catalytical active site, so the mechanism of the catalytic reaction between GlcNH2 and the TDES was proposed. Moreover, a reaction intermediate, dihydrofructosazine, was identified in the self-condensation reaction of GlcNH2 by an in situ 1H NMR technique.

     

  • loading
  • [1]
    J.R. Rostrup-Nielsen, Science 308 (2005) 1421-1422.
    [2]
    X. Chen, S.L. Chew, F.M. Kerton, N. Yan, Green Chem.. 16 (2014) 2204-2212.
    [3]
    G.W. Huber, S. Iborra, A. Corma, Chem. Rev. 106 (2006) 4044-4098.
    [4]
    A. Corma, S. Iborra, A. Velty, Chem. Rev. 107 (2007) 2411-2502.
    [5]
    N. Yan, C. Zhao, C. Luo, P.J. Dyson, H. Liu, Y. Kou, J. Am. Chem. Soc. 128 (2006) 8714-8715.
    [6]
    H. Kobayashi, A. Fukuoka, Green Chem.. 15 (2013) 1740-1763.
    [7]
    T. Deng, X. Cui, Y. Qi, Y. Wang, X. Hou, Y. Zhu, Chem. Commun. 48 (2012) 5494-5496.
    [8]
    A. Fukuoka, P.L. Dhepe, Angew. Chem. Int. Ed. 45 (2006) 5161-5163.
    [9]
    N. Yan, Y. Yuan, R. Dykeman, Y. Kou, P.J. Dyson, Angew. Chem. Int. Ed. 49 (2010) 5549-5553.
    [10]
    J.N. Chheda, G.W. Huber, J.A. Dumesic, Angew. Chem. Int. Ed. 46 (2007) 7164-7183.
    [11]
    C.K.S. Pillai, W. Paul, C.P. Sharma, Prog. Polym. Sci. 34 (2009) 641-678.
    [12]
    M. Kumar, React. Funct. Polym. 46 (2000) 1-27.
    [13]
    T.T. Franco, A.G. Peter, Polym. Int. 60 (2011) 873-874.
    [14]
    F.M. Kerton, Y. Liu, K.W. Omari, K. Hawboldt, Green Chem.. 15 (2013) 860-871.
    [15]
    A. Domard, Carbohydr. Polym. 84 (2011) 696-703.
    [16]
    Y. Wang, C.M. Pedersen, T. Deng, Y. Qiao, X. Hou, Bioresour. Technol.. 143 (2013) 384-390.
    [17]
    A.D. Sadiq, X. Chen, N. Yan, J. Sperry, Chemsuschem 11 (2018) 532-535.
    [18]
    L. Jia, Y. Wang, Y. Qiao, Y. Qi, X. Hou, RSC Adv.. 4 (2014) 44253-44260.
    [19]
    A. Zhu, J.-B. Huang, A. Clark, R. Romero, H.R. Petty, Carbohydr. Res. 342 (2007) 2745-2749.
    [20]
    K. Sumoto, M. Irie, N. Mibu, S. Miyano, Y. Nakashima, K. Watanabe, T. Yamaguchi, Chem. Pharm. Bull. 39 (1991) 792-794.
    [21]
    S. Wu, H. Fan, Q. Zhang, Y. Cheng, Q. Wang, G. Yang, B. Han, Clean-Soil Air Water 39 (2011) 572-576.
    [22]
    K. Agyei-Aye, M.X. Chian, J.H. Lauterbach, S.C. Moldoveanu, Carbohydr. Res. 337 (2002) 2273-2277.
    [23]
    J. Rohovec, J. Kotek, J.A. Peters, T. Maschmeyer, Eur. J. Org Chem. (2001) 3899-3901.
    [24]
    L. Jia, C.M. Pedersen, Y. Qiao, T. Deng, P. Zuo, W. Ge, Z. Qin, X. Hou, Y. Wang, Phys. Chem. Chem. Phys. 17 (2015) 23173-23182.
    [25]
    A.P. Abbott, G. Capper, D.L. Davies, H.L. Munro, R.K. Rasheed, V. Tambyrajah, Chem. Commun. (2001) 2010-2011.
    [26]
    A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Chem. Commun. (2003) 70-71.
    [27]
    D. Carriazo, M. Concepcion Serrano, M. Concepcion Gutierrez, M. Luisa Ferrer, F. Del Monte, Chem. Soc. Rev. 41 (2012) 4996-5014.
    [28]
    Y. Dai, J. Van Spronsen, G.-J. Witkamp, R. Verpoorte, Y.H. Choi, Anal. Chim. Acta 766 (2013) 61-68.
    [29]
    A. Paiva, R. Craveiro, I. Aroso, M. Martins, R.L. Reis, A.R.C. Duarte, ACS Sustain. Chem. Eng. 2 (2014) 1063-1071.
    [30]
    T. Li, G. Lyu, Y. Liu, R. Lou, L.A. Lucia, G. Yang, J. Chen, H.a.M. Saeed, Int. J. Mol. Sci. 18 (2017).
    [31]
    C. Russ, B. Koenig, Green Chem.. 14 (2012) 2969-2982.
    [32]
    D.A. Alonso, A. Baeza, R. Chinchilla, G. Guillena, I.M. Pastor, D.J. Ramon, Eur. J. Org Chem. (2016) 612-632.
    [33]
    S. Khandelwal, Y.K. Tailor, M. Kumar, J. Mol. Liq. 215 (2016) 345-386.
    [34]
    Y. Chen, T. Mu, Green Energy Environ. 4 (2019) 95-115.
    [35]
    X.Y. Li, M.Q. Hou, B.X. Han, X.L. Wang, L.Z. Zou, J. Chem. Eng. Data 53 (2008) 548-550.
    [36]
    M. Sharma, C. Mukesh, D. Mondal, K. Prasad, RSC Adv.. 3 (2013) 18149-18155.
    [37]
    L.L. Sze, S. Pandey, S. Ravula, S. Pandey, H. Zhao, G.A. Baker, S.N. Baker, ACS Sustain. Chem. Eng. 2 (2014) 2117-2123.
    [38]
    Q. Xia, Y. Liu, J. Meng, W. Cheng, W. Chen, S. Liu, Y. Liu, J. Li, H. Yu, Green Chem.. 20 (2018) 2711-2721.
    [39]
    J. Wang, S.N. Baker, Green Process. Synth. 7 (2018) 353-359.
    [40]
    A.K. Jangir, D. Patel, R. More, A. Parmar, K. Kuperkar, J. Mol. Struct. 1181 (2019) 295-299.
    [41]
    W. Xing, G. Xu, J. Dong, R. Han, Y. Ni, Chem. Eng. J. 333 (2018) 712-720.
    [42]
    Z. Chen, W.A. Jacoby, C. Wan, Bioresour. Technol.. 279 (2019) 281-286.
    [43]
    F. Chemat, H.J. You, K. Muthukumar, T. Murugesan, J. Mol. Liq. 212 (2015) 605-611.
    [44]
    T. Rundlof, M. Mathiasson, S. Bekiroglu, B. Hakkarainen, T. Bowden, T. Arvidsson, J. Pharmaceut. Biomed. 52 (2010) 645-651.
    [45]
    D. Shah, U. Mansurov, F.S. Mjalli, Phys. Chem. Chem. Phys. 21 (2019) 17200-17208.
    [46]
    R. Deng, Y. Sun, H. Bi, H. Dou, H. Yang, B. Wang, W. Tao, B. Jiang, Energy Fuel. 31 (2017) 11146-11155.
    [47]
    R.C. Remsing, R.P. Swatloski, R.D. Rogers, G. Moyna, Chem. Commun. (2006) 1271-1273.
    [48]
    C. Zhang, R. Liu, J. Xiang, H. Kang, Z. Liu, Y. Huang, J. Phys. Chem. B 118 (2014) 9507-9514.
    [49]
    E.J. Cabrita, S. Berger, Magn. Reson. Chem. 39 (2001) S142-S148.
    [50]
    D. Li, G. Kagan, R. Hopson, P.G. Williard, J. Am. Chem. Soc. 131 (2009) 5627-5634.
    [51]
    Q. Zhou, J. Xiang, Y. Tang, Chin. J. Magn. Reson. 27 (2010) 68-79.
    [52]
    M. Zanatta, V.U. Antunes, C.F. Tormena, J. Dupont, F.P. Dos Santos, Phys. Chem. Chem. Phys. 21 (2019) 2567-2571.
    [53]
    L. Jia, X. Liu, Y. Qiao, C.M. Pedersen, Z. Zhang, H. Ge, Z. Wei, Y. Chen, X. Wen, X. Hou, Y. Wang, Appl. Catal. B Environ. 202 (2017) 420-429.
    [54]
    M. Wu, H. Ma, Z. Ma, Y. Jin, C. Chen, X. Guo, Y. Qiao, C.M. Pedersen, X. Hou, Y. Wang, ACS Sustain. Chem. Eng. 6 (2018) 9434-9441.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (173) PDF downloads(15) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return