Volume 6 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
Biwen Li, Chenlu Wang, Yaqin Zhang, Yanlei Wang. High CO2 absorption capacity of metal-based ionic liquids: A molecular dynamics study. Green Energy&Environment, 2021, 6(2): 253-260. doi: 10.1016/j.gee.2020.04.009
Citation: Biwen Li, Chenlu Wang, Yaqin Zhang, Yanlei Wang. High CO2 absorption capacity of metal-based ionic liquids: A molecular dynamics study. Green Energy&Environment, 2021, 6(2): 253-260. doi: 10.1016/j.gee.2020.04.009

High CO2 absorption capacity of metal-based ionic liquids: A molecular dynamics study

doi: 10.1016/j.gee.2020.04.009
  • The absorption of CO2 is of importance in carbon capture, utilization, and storage technology for greenhouse gas control. In the present work, we clarified the mechanism of how metal-based ionic liquids (MBILs), Bmim[XCln]m (X is the metal atom), enhance the CO2 absorption capacity of ILs via performing molecular dynamics simulations. The sparse hydrogen bond interaction network constructed by CO2 and MBILs was identified through the radial distribution function and interaction energy of CO2-ion pairs, which increase the absorption capacity of CO2 in MBILs. Then, the dynamical properties including residence time and self-diffusion coefficient confirmed that MBILs could also promote the diffusion process of CO2 in ILs. That's to say, the MBILs can enhance the CO2 absorption capacity and the diffusive ability simultaneously. Based on the analysis of structural, energetic and dynamical properties, the CO2 absorption capacity of MBILs increases in the order Cl → [ZnCl4]2−→ [CuCl4]2−→ [CrCl4] → [FeCl4], revealing the fact that the short metal–Cl bond length and small anion volume could facilitate the performance of CO2 absorbing process. These findings show that the metal–Cl bond length and effective volume of the anion can be the effective factors to regulate the CO2 absorption process, which can also shed light on the rational molecular design of MBILs for CO2 capture and other key chemical engineering processes, such as IL-based gas sensors, nano-electrical devices and so on.

     

  • loading
  • [1]
    R.F. Service, Science 305 (2004) 963.
    [2]
    G.P. Hammond, S.S.O. Akwe, S. Williams, Energy 36 (2011) 975-984.
    [3]
    S. Zeng, X. Zhang, L. Bai, X. Zhang, H. Wang, J. Wang, D. Bao, M. Li, X. Liu, S. Zhang, Chem. Rev. 117 (2017) 9625-9673.
    [4]
    L.C. Tome, I.M. Marrucho, Chem. Soc. Rev. 45 (2016) 2785-2824.
    [5]
    Q. Huang, Q. Luo, Y. Wang, E. Pentzer, B. Gurkan, Ind. Eng. Chem. Res. 58 (2019) 10503-10509.
    [6]
    C.A. Trickett, A. Helal, B.A. Al-Maythalony, Z.H. Yamani, K.E. Cordova, O.M. Yaghi, Nat. Rev. Mater. 2 (2017) 17045.
    [7]
    I. Sreedhar, T. Nahar, A. Venugopal, B. Srinivas, Renew. Sust. Energ. Rev. 76 (2017) 1080-1107.
    [8]
    B. Gurkan, F. Simeon, T.A. Hatton, ACS Sust. Chem. Eng. 3 (2015) 1394-1405.
    [9]
    Z. Dai, R.D. Noble, D.L. Gin, X. Zhang, L. Deng, J. Mem. Sci. 497 (2016) 1-20.
    [10]
    X. Cui, K. Chen, H. Xing, Q. Yang, R. Krishna, Z. Bao, H. Wu, W. Zhou, X. Dong, Y. Han, B. Li, Q. Ren, M.J. Zaworotko, B. Chen, Science 353 (2016) 141-144.
    [11]
    K. Dong, X. Liu, H. Dong, X. Zhang, S. Zhang, Chem. Rev. 117 (2017) 6636-6695.
    [12]
    R.D. Rogers, K.R. Seddon, Science 302 (2003) 792-793.
    [13]
    S. Zhang, Y. Wang, H. He, F. Huo, Y. Lu, X. Zhang, K. Dong, Green Energy Env. 2 (2017) 329-330.
    [14]
    C. Wang, Y. Wang, Y. Lu, H. He, F. Huo, K. Dong, N. Wei, S. Zhang, Phys. Chem. Chem. Phys. 21 (2019) 12767-12776.
    [15]
    E. Torralba-Calleja, J. Skinner, D. Gutierrez-Tauste, J. Chem. 2013 (2013) 16.
    [16]
    M. Dzida, E. Zorebski, M. Zorebski, M. Zarska, M. Geppert-Rybczynska, M. Chorazewski, J. Jacquemin, I. Cibulka, Chem. Rev. 117 (2017) 3883-3929.
    [17]
    C. Wang, Y. Guo, X. Zhu, G. Cui, H. Li, S. Dai, Chem. Commun. 48 (2012) 6526-6528.
    [18]
    F. Ding, J. Zheng, Y. Chen, K. Chen, G. Cui, H. Li, C. Wang, Ind. Eng. Chem. Res. 53 (2014) 18568-18574.
    [19]
    J. Wang, S. Zeng, F. Huo, D. Shang, H. He, L. Bai, X. Zhang, J. Li, J. Clean. Prod. 206 (2019) 661-669.
    [20]
    X. Suhua;, D. Jing;, Y. Dahong;, P. Changjun;, L. Honglai, J. East China Uni. Sci. Tech. 40 (2014) 273-278.
    [21]
    T. Zhang, Y. Zhang, Y. Wang, F. Huo, Z. Li, Q. Zeng, H. He, X. Li, Front. Chem. 7 (2019).
    [22]
    Z. Li, Z. Cai, Q. Zeng, T. Zhang, L.J. France, C. Song, Y. Zhang, H. He, L. Jiang, J. Long, X. Li, Green Chem. 20 (2018) 3743-3752.
    [23]
    S. Zeng, J. Wang, P. Li, H. Dong, H. Wang, X. Zhang, X. Zhang, Chem. Eng. J. 370 (2019) 81-88.
    [24]
    Z.H. Kafafi, R.H. Hauge, W.E. Billups, J.L. Margrave, J. Am. Chem. Soc. 105 (1983) 3886-3893.
    [25]
    Z.H. Kafafi, R.H. Hauge, W.E. Billups, J.L. Margrave, Inorg. Chem. 23 (1984) 177-183.
    [26]
    J. Mascetti, M. Tranquille, J. Phys. Chem. 92 (1988) 2177-2184.
    [27]
    W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc. 118 (1996) 11225-11236.
    [28]
    Y. Wang, F. Huo, H. He, S. Zhang, Phys. Chem. Chem. Phys. 20 (2018) 17773-17780.
    [29]
    A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, J. Am. Chem. Soc. 114 (1992) 10024-10035.
    [30]
    R.T. Cygan, V.N. Romanov, E.M. Myshakin, J. Phys. Chem. C 116 (2012) 13079-13091.
    [31]
    R.W. Hockney, J.W. Eastwood, Computer simulation using particles, Taylor & Francis, Inc., 1988.
    [32]
    S. Plimpton, J. Comput. Phys. 117 (1995) 1-19.
    [33]
    H.J.C. Berendsen, J.P.M. Postma, W.F. Van Gunsteren, A. Dinola, J.R. Haak, J. Chem. Phys. 81 (1984) 3684-3690.
    [34]
    M. Frisch, G. Trucks, H.B. Schlegel, G.E. Scuseria, Gaussian 09 (Revision D.01), 2009.
    [35]
    P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98 (1994) 11623-11627.
    [36]
    M.P. Andersson, P. Uvdal, J. Phys. Chem. A 109 (2005) 2937-2941.
    [37]
    T. Zhang, Y. Zhang, Y. Wang, F. Huo, Z. Li, Q. Zeng, H. He, X. Li, Front. Chem. 7 (2019) 446.
    [38]
    J.P. Merrick, D. Moran, L. Radom, J. Phys. Chem. A 111 (2007) 11683-11700.
    [39]
    I.M. Alecu, J.J. Zheng, Y. Zhao, D.G. Truhlar, J. Chem. Theory Comput 6 (2010) 2872-2887.
    [40]
    S. Qu, H. Dai, Y. Dang, C. Song, Z.-X. Wang, H. Guan, ACS Catalysis 4 (2014) 4377-4388.
    [41]
    S.M. Brothers, M.Y. Darensbourg, M.B. Hall, Inorg. Chem. 50 (2011) 8532-8540.
    [42]
    D.N. Bowman, A. Bondarev, S. Mukherjee, E. Jakubikova, Inorg. Chem. 54 (2015) 8786-8793.
    [43]
    R.W. Impey, P.A. Madden, I.R. Mcdonald, J. Phys. Chem. 87 (1983) 5071-5083.
    [44]
    D. Laage, J.T. Hynes, J. Phys. Chem. B 112 (2008) 7697-7701.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (200) PDF downloads(17) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return