Volume 6 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Meng Shao, Peican Wang, Yimeng Wang, Baoguo Wang, Yundong Wang, Jianhong Xu. Continuous synthesis of few-layer MoS2 with highly electrocatalytic hydrogen evolution. Green Energy&Environment, 2021, 6(6): 858-865. doi: 10.1016/j.gee.2020.04.008
Citation: Meng Shao, Peican Wang, Yimeng Wang, Baoguo Wang, Yundong Wang, Jianhong Xu. Continuous synthesis of few-layer MoS2 with highly electrocatalytic hydrogen evolution. Green Energy&Environment, 2021, 6(6): 858-865. doi: 10.1016/j.gee.2020.04.008

Continuous synthesis of few-layer MoS2 with highly electrocatalytic hydrogen evolution

doi: 10.1016/j.gee.2020.04.008
  • As one of the most promising alternative fuels, hydrogen is expected with high hopes. The electrolysis of water is regarded as the cleanest and most efficient method of hydrogen production. Molybdenum disulfide (MoS2) is deemed as one of the most promising alternatives HER catalysts owing to its high catalytic activity and low cost. Its continuous production and efficient preparation become the key problems in future industrial production. In this work, we first developed a continuous micro-reaction approach with high heat and mass transfer rates to synthesize few-layer MoS2 nanoplates with abundant active sites. The defective MoS2 ultrathin nanoplates exhibit excellent HER performance with an overpotential of 260 mV at a current density of 10 mA cm-2, small Tafel slope (53.6 mV dec-1) and prominent durability, which are comparable to most reported MoS2 based catalysts. Considering the existence of continuous devices, it's suitable for the synthesis of MoS2 as high-performance electrocatalysts for the industrial water electrolysis. The novel preparation method may open up a new way to synthesize all two-dimension materials toward HER.

     

  • Meng Shao and Peican Wang contributed equally to this work.
  • loading
  • [1]
    I. Dincer, C. Acar, Int. J. Hydrogen Energy 40(2015) 11094-11111.
    [2]
    B.M. Tackett, Y.C. Kimmel, J.G. Chen, Int. J. Hydrogen Energy 41(2016) 5948-5954.
    [3]
    X. Yue, C. He, C. Zhong, Y. Chen, S.P. Jiang, P.K. Shen, Adv. Mater. 28(2016) 2163-2169.
    [4]
    B.M. Tackett, W. Sheng, J.G. Chen, Joule 1(2017) 253-263.
    [5]
    S.B. Yang, X.L. Feng, X.C. Wang, K. Mullen, Angew. Chem. Int. Ed. 50(2011) 5339-5343.
    [6]
    S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, P.M. Ajayan, Adv. Mater. 25(2013) 2452-2456.
    [7]
    D.D. Vaughn, J. Araujo, P. Meduri, J.F. Callejas, M.A. Hickner, R.E. Schaak, Chem. Mater. 26(2014) 6226-6232.
    [8]
    N. Coleman, M.D. Loyander, J. Leddy, E.G. Gillan, Inorg. Chem. 58(2019) 5013-5024.
    [9]
    Q. Cao, W.L. Gu, J. Li, E.K. Wang, Electroanalysis 30(2018) 2584-2588.
    [10]
    L. Zhang, C. Chang, C.W. Hsu, C.W. Chang, S.Y. Lu, J. Mater. Chem. 5(2017) 19656-19663.
    [11]
    T. Tian, L.H. Ai, J. Jiang, RSC Adv. 5(2015) 10290-10295.
    [12]
    Q. Hu, X.F. Liu, B. Zhu, G.M. Li, L.D. Fan, X.Y. Chai, Q.L. Zhang, J.H. Liu, C.X. He, J. Power Sources 398(2018) 159-166.
    [13]
    S.Y. Tai, C.J. Liu, S.W. Chou, F.S.S. Chien, J.Y. Lin, T.W. Lin, J. Mater. Chem. 22(2012) 24753-24759.
    [14]
    V. Itthibenchapong, C. Ratanatawanate, M. Oura, K. Faungnawakij, Catal. Commun. 68(2015) 31-35.
    [15]
    R. Zhou, J.G. Wang, H.Z. Liu, H.Y. Liu, D.D. Jin, X.R. Liu, C. Shen, K.Y. Xie, B.Q. Wei, Materials 10(2017) 174.
    [16]
    T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Science 317(2007) 100-102.
    [17]
    P. Wang, L. Wan, Y. Lin, B. Wang, Int. J. Hydrogen Energy 44(2019) 16566-16574.
    [18]
    W. Teng, Y. Wang, H. Huang, X. Li, Y. Tang, Appl. Surf. Sci. 425(2017) 507-517.
    [19]
    A.A. Murthy, Y. Li, E. Palacios, Q. Li, S. Hao, J.G. Distefano, C. Wolverton, K. Aydin, X. Chen, V.P. Dravid, ACS Appl. Mater. Interfaces 10(2018) 6799-6804.
    [20]
    Z. Zhang, S. Wu, J. Cheng, W. Zhang, Energy Storage Mater. 15(2018) 65-74.
    [21]
    Y.F. Guo, X.G. Qi, X.L. Fu, Y.S. Hu, Z.J. Peng, J. Mater. Sci. 54(2019) 4105-4114.
    [22]
    L. Yang, J.J. Zhang, C. Feng, G.M. Xu, C.G. Xie, X.Q. Yuan, B. Xiang, Mater. Res. Express 6(2019) 085005.
    [23]
    H.Y. Yue, P.F. Wu, S. Huang, Z.Z. Wang, X. Gao, S.S. Song, W.Q. Wang, H.J. Zhang, X.R. Guo, Microchim. Acta 186(2019) 378.
    [24]
    X. Lu, Y. Lin, H. Dong, W. Dai, X. Chen, X. Qu, X. Zhang, Sci. Rep. 7(2017) 42309.
    [25]
    C.-B. Ma, X. Qi, B. Chen, S. Bao, Z. Yin, X.-J. Wu, Z. Luo, J. Wei, H.-L. Zhang, H. Zhang, Nanoscale 6(2014) 5624-5629.
    [26]
    C.H. Ravikumar, G.V. Nair, S. Muralikrishna, D.H. Nagaraju, R.G. Balakrishna, Mater. Lett. 220(2018) 133-135.
    [27]
    Y. Huang, Y. Wang, X. Zhang, F. Lai, Y. Sun, Q. Li, H. Wang, Mater. Lett. 243(2019) 84-87.
    [28]
    Y. Liu, Y. Cao, H. Lv, S. Li, H. Zhang, Mater. Lett. 188(2017) 99-102.
    [29]
    Y. Yan, B. Xia, X. Ge, Z. Liu, J.-Y. Wang, X. Wang, ACS Appl. Mater. Interfaces 5(2013) 12794-12798.
    [30]
    Y. Yu, S.-Y. Huang, Y. Li, S.N. Steinmann, W. Yang, L.J. Cao, Nano Lett. 14(2014) 553-558.
    [31]
    J.F. Xie, H. Zhang, S. Li, R.X. Wang, X. Sun, M. Zhou, J.F. Zhou, X.W. Lou, Y. Xie, Adv. Mater. 25(2013) 5807.
    [32]
    C.H. Chang, B.K. Paul, V.T. Remcho, S. Atre, J.E. Hutchison, J. Nanopart. Res. 10(2008) 965-980.
    [33]
    S. Taghavi-Moghadam, A. Kleemann, K.G. Golbig, Org. Process Res. Dev. 5(2001) 652-658.
    [34]
    Z. Wan, H.W. Yang, W.L. Luan, S.T. Tu, X.G. Zhou, Nanoscale Res. Lett. 5(2010) 130-137.
    [35]
    D.L. Chen, C.J. Gerdts, R.F. Ismagilov, J. Am. Chem. Soc. 127(2005) 9672-9673.
    [36]
    B. Zheng, L.S. Roach, R.F. Ismagilov, J. Am. Chem. Soc. 125(2003) 11170-11171.
    [37]
    J. Wagner, T.R. Tshikhudo, J.M. Koehler, Chem. Eng. J. 135(2008) S104-S109.
    [38]
    J.M. Kohler, L. Abahmane, J. Wagner, J. Albert, G. Mayer, Chem. Eng. Sci. 63(2008) 5048-5055.
    [39]
    Z.H. Tian, M. Shao, X.Y. Zhao, Y.J. Wang, K. Wang, J.H. Xu, Cryst. Growth Des. 18(2018) 3953-3958.
    [40]
    T.L. Sounart, P.A. Safier, J.A. Voigt, J. Hoyt, D.R. Tallant, C.M. Matzke, T.A. Michalske, Lab Chip 7(2007) 908-915.
    [41]
    I. Shestopalov, J.D. Tice, R.F. Ismagilov, Lab Chip 4(2004) 316-321.
    [42]
    J.B. Edel, R. Fortt, J.C. Demello, A.J. Demello, Chem. Commun. 10(2002) 1136-1137.
    [43]
    L.H. Hung, K.M. Choi, W.Y. Tseng, Y.C. Tan, K.J. Shea, A.P. Lee, Lab Chip 6(2006) 174-178.
    [44]
    A. Abou-Hassan, O. Sandre, S. Neveu, V. Cabuil, Angew. Chem. Int. Ed. 48(2009) 2342-2345.
    [45]
    K. Wang, Y.J. Wang, G.G. Chen, G.S. Luo, J.D. Wang, Ind. Eng. Chem. Res. 46(2007) 6092-6098.
    [46]
    L. Du, Y.J. Wang, K. Wang, G.S. Luo, Ind. Eng. Chem. Res. 54(2015) 7131-7140.
    [47]
    M.D. Patel, J.B. Zhang, J. Park, N. Choudhary, J.M. Tour, W.B. Choi, Mater. Lett. 225(2018) 65-68.
    [48]
    R.C. Li, L.J. Yang, T.L. Xiong, Y.S. Wu, L.D. Cao, D.S. Yuan, W.J. Zhou, J. Power Sources 356(2017) 133-139.
    [49]
    B.J. Guo, K. Yu, H.L. Li, H.L. Song, Y.Y. Zhang, X. Lei, H. Fu, Y.H. Tan, Z.G. Zhu, ACS Appl. Mater. Interfaces 8(2016) 5517-5525.
    [50]
    N. Liu, L.C. Yang, S.N. Wang, Z.W. Zhong, S.N. He, X.Y. Yang, Q.S. Gao, Y. Tang, J. Power Sources 275(2015) 588-594.
    [51]
    K. Hernandez Ruiz, J. Liu, R. Tu, M. Li, S. Zhang, J.R. Vargas Garcia, S. Mu, H. Li, T. Goto, L. Zhang, J. Alloys Compd. 747(2018) 100-108.
    [52]
    H. Sun, X. Ji, Y. Qiu, Y. Zhang, Z. Ma, G.-G. Gao, P. Hu, J. Alloys Compd. 777(2019) 514-523.
    [53]
    P. Zhang, H. Xiang, L. Tao, H. Dong, Y. Zhou, T.S. Hu, X. Chen, S. Liu, S. Wang, S. Garaj, Nanomater. Energy 57(2019) 535-541.
    [54]
    J. Jian, Y. Li, H. Bi, X. Wang, X. Wu, W. Qin, ACS Sustain. Chem. Eng. 8(2020) 4547-4554.
    [55]
    T. Liu, L. Xie, J. Yang, R. Kong, G. Du, A.M. Asiri, X. Sun, L. Chen, ChemElectroChem 4(2017) 1840-1845.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (181) PDF downloads(13) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return