Volume 6 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
Haiying Che, Xinrong Yang, Yan Yu, Chaoliang Pan, Hong Wang, Yonghong Deng, Linsen Li, Zi-Feng Ma. Engineering optimization approach of nonaqueous electrolyte for sodium ion battery with long cycle life and safety. Green Energy&Environment, 2021, 6(2): 212-219. doi: 10.1016/j.gee.2020.04.007
Citation: Haiying Che, Xinrong Yang, Yan Yu, Chaoliang Pan, Hong Wang, Yonghong Deng, Linsen Li, Zi-Feng Ma. Engineering optimization approach of nonaqueous electrolyte for sodium ion battery with long cycle life and safety. Green Energy&Environment, 2021, 6(2): 212-219. doi: 10.1016/j.gee.2020.04.007

Engineering optimization approach of nonaqueous electrolyte for sodium ion battery with long cycle life and safety

doi: 10.1016/j.gee.2020.04.007
  • Electrolyte design strategies are closely related to the capacities, cycle life and safety of sodium–ion batteries. In this study, we aimed to optimize electrolyte with the focus on engineering aspects. The basic physicochemical properties including ionic conductivity, viscosity, wettability and thermochemical stability of the electrolytes using NaPF6 as the solute and the mixed solvent with different components of EMC, DMC or DEC in PC or EC were systematically measured. Ah pouch cell with NaNi1/3Fe1/3Mn1/3O2/hard carbon electrodes was used to evaluate the performance of the prepared electrolytes. By using the Inductive Coupled Plasma Emission Spectrometer (ICP), X-ray photoelectron spectroscopy (XPS), Thermogravimetric-differential scanning calorimetry (TG-DSC) and Accelerating Rate Calorimeter (ARC), we show that an optimized electrolyte can effectively promote the formation of a protective interfacial layer on two electrodes, which not only retards parasitic reactions between the electrodes and electrolyte but also suppresses dissolution of metal ions from the cathode. With an optimized electrolyte, a NaNi1/3Fe1/3Mn1/3O2/hard carbon cell can attain 56.16% capacity retention under the low temperature of −40 °C, and can be able to retain 80% capacity retention after more than 2500 cycles while presenting excellent thermal safety.

     

  • loading
  • [1]
    J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Chem. Soc. Rev. 46 (2017) 3529-3614.
    [2]
    K. Kubota, S. Kumakura, Y. Yoda, K. Kuroki, S. Komaba, Adv. Energy Mater. 8 (2018) 1703415.
    [3]
    M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Adv. Funct. Mater. 23 (2013) 947-958.
    [4]
    C. Vaalma, D. Buchholz, M. Weil, S. Passerini, Nat. Rev. Mater. 3 ( 2018) 18013.
    [5]
    G.-L. Xu, R. Amine, A. Abouimrane, H. Che, M. Dahbi, Z.-F. Ma, I. Saadoune, J. Alami, W.L. Mattis, F. Pan, Z. Chen, K. Amine, Adv. Energy Mater. 8 (2018) 1702403.
    [6]
    V. Palomares, M. Casas-Cabanas, E. Castillo-Martinez, M.H. Han, T. Rojo, Energy Environ. Sci. 6 (2013) 2312-2337.
    [7]
    X. Xiang, K. Zhang, J. Chen, Adv. Mater. 27 ( 2015) 5343-5364.
    [8]
    L. Chen, M. Fiore, J.E. Wang, R. Ruffo, D.K. Kim, G. Longoni, Adv. Sus. Sys. 2 (2018) 1700153.
    [9]
    L. Liang, Y. Xu, C. Wang, L. Wen, Y. Fang, Y. Mi, M. Zhou, H. Zhao, Y. Lei, Energy Environ. Sci. 8 (2015) 2954-2962.
    [10]
    Y. Li, Y.-S. Hu, X. Qi, X. Rong, H. Li, X. Huang, L. Chen, Energy Storage Mater. 5 (2016) 191-197.
    [11]
    L. Zhao, T. Tang, W. Chen, X. Feng, L. Mi, Green Energy Environ. 3 (2018) 277-285.
    [12]
    B. Zhang, R. Dugas, G. Rousse, P. Rozier, A.M. Abakumov, J.M. Tarascon, Nature Commun. 7 ( 2016) 10308.
    [13]
    A. Bauer, J. Song, S. Vail, W. Pan, J. Barker, Y. Lu, Adv. Energy Mater. 8 ( 2018) 1702869.
    [14]
    D. Yang, J. Xu, X.Z. Liao, Y.S. He, H. Liu, Z.F. Ma, Chem. Commun. 50 (2014) 13377-13380.
    [15]
    D. Kim, E. Lee, M. Slater, W. Lu, S. Rood, C.S. Johnson, Electrochem. Commun.18 (2012) 66-69.
    [16]
    M. Sathiya, K. Hemalatha, K. Ramesha, J.M. Tarascon, A.S. Prakash, Chem. Mater. 24 ( 2012) 1846-1853.
    [17]
    H. Wang, X.-Z. Liao, Y. Yang, X. Yan, Y.-S. He, Z.-F. Ma, J. Electrochem. Soc. 163 (2016) A565-A570.
    [18]
    J.Y. Hwang, S.M. Oh, S.T. Myung, K.Y. Chung, I. Belharouak, Y.K. Sun, Nature Commun. 6 (2015) 6865.
    [19]
    F. Wu, N. Zhu, Y. Bai, Y. Li, Z. Wang, Q. Ni, H. Wang, C. Wu, Nano Energy 51 (2018) 524-532.
    [20]
    A.V. Cresce, S.M. Russell, O. Borodin, J.A. Allen, M.A. Schroeder, M. Dai, J. Peng, M.P. Gobet, S.G. Greenbaum, R.E. Rogers, K. Xu, Phys. Chem. Chem. Phys. 19 (2017) 574-586.
    [21]
    S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh, K. Fujiwara, Adv. Funct. Mater. 21 (2011) 3859-3867.
    [22]
    X. Xia, M.N. Obrovac, J.R. Dahn, Electrochem. Solid State 14 (2011) A130-A133.
    [23]
    B. Philippe, M. Valvo, F. Lindgren, H. Rensmo, K. Edstrom, Chem. Mater. 26 (2014) 5028-5041.
    [24]
    D.I. Iermakova, R. Dugas, M.R. Palacin, A. Ponrouch, J. Electrochem. Soc. 162 (2015) A7060-A7066.
    [25]
    Y. Zhang, Y. Katayama, R. Tatara, L. Giordano, Yang Yu, D. Fraggedakis, Jame G. Sun, F. Maglia, R. Jung, Martin Z. Bazant, Y. Shao-Horn, Energy Environ. Sci. 13 (2020)183-199
    [26]
    Z. Chen, Y. Qin, Y. Ren, W. Lu, C. Orendorff, E.P. Roth, K. Amine, Energy Environ. Sci. 4 (2011) 4023-4030.
    [27]
    H. Che, S. Chen, Y. Xie, H. Wang, K. Amine, X.-Z. Liao, Z.-F. Ma, Energy Environ. Sci. 10 (2017) 1075-1101.
    [28]
    K. Matsumoto, J. Hwang, S. Kaushik, C.-Y. Chen, R. Hagiwara, Energy Environ. Sci. 12 (2019) 3247-3287.
    [29]
    X.-F. Luo, A. S. Helal, C.-T. Hsieh, J. Li, J.-K. Chang, Nano Energy 49 (2018) 515-522.
    [30]
    G. G. Eshetu, T. Diemant, M. Hekmatfar, S. Grugeon, R. J. Behm, S. Laruelle, M. Armand, S. Passerini, Nano Energy 55 (2019) 327-340.
    [31]
    C. Vidal-Abarca, P. Lavela, J.L. Tirado, A.V. Chadwick, M. Alfredsson, E. Kelder, J. Power Sources 197 (2012) 314-318.
    [32]
    S-M. Oh, S-T. Myung, C. Yoon, J. Lu, J. Hassoun, B. Scrosati, K. Amine, Y-K. Sun, Nano Lett. 14 (2014) 1620-1626.
    [33]
    A. Bhide, J. Hofmann, A. Durr, J. Janek, P. Adelhelm, Phys. Chem. Chem. Phys. 16 (2014) 1987-1998.
    [34]
    A. Ponrouch, R. Dedryvere, D. Monti, A.E. Demet, J.M. Ateba Mba, L. Croguennec, C. Masquelier, P. Johansson, M.R. Palacin, Energy Environ. Sci. 6 (2013) 2361-2369.
    [35]
    I. Hasa, X. Dou, D. Buchholz, Y Shao-Horn,J Hassoun, S. Passerini, B. Scrosati, J. Power Sources 310 (2016) 26 -31.
    [36]
    H. Che, X. Yang, H. Wang, X.-Z. Liao, S.S. Zhang, C. Wang, Z.-F. Ma, J. Power Sources 407 (2018) 173-179.
    [37]
    K. Xu, Chem. Rev. 104 (2004) 4303-4418.
    [38]
    A. Ponrouch, D. Monti, A. Boschin, B. Steen, P. Johansson, M. R. Palacin, J. Mater. Chem. A 3 (2015), 22-42.
    [39]
    C-C. Su, M. He, R. Amine, Z. Chen, R. Sahore, N.D. Rago, K. Amine, Energy Storage Mater. 17 (2019) 284-292.
    [40]
    Y. Xie, G.-L. Xu, H. Che, H. Wang, K. Yang, X. Yang, F. Guo, Y. Ren, Z. Chen, K. Amine, Z.-F. Ma, Chem. Mater. 30 (2018) 4909-4918.
    [41]
    K. Leung, J. Phys. Chem. C 116 (2012) 9852-9861.
    [42]
    K. Leung, J. Phys. Chem. C 117 (2012)1539-1547.
    [43]
    G.G. Eshetu, T. Diemant, M. Hekmatfar, S. Grugeon, R.J. Behm, S. Laruelle, M. Armand, S. Passerini, Nano Energy 55 (2019) 327-340.
    [44]
    L. Mu, X. Feng, R. Kou, Y. Zhang, H. Guo, C. Tian, C.-J. Sun, X.-W. Du, D. Nordlund, H.L. Xin, F. Lin, Adv. Energy Mater. 8 ( 2018) 1801975.
    [45]
    M. Gauthier, P. Karayaylali, L. Giordano, S. Feng, S.F. Lux, F. Maglia, P. Lamp, Y. Shao-Horn, J. Electrochem. Soc. 165 (2018) A1377-A1387.
    [46]
    L. Mu, Y. Lu, X. Wu, Y. Ding, Y.-S. Hu, H. Li, L. Chen, X. Huang, Green Energy Environ. 3 (2018) 63-70.
    [47]
    Y. Zhao, H. Wang, G. Gao, L. Qi, Ionics 19 (2013)1595-1602.
    [48]
    J. Chen, Z. Huang, C. Wang, S. Porter, B. Wang, W. Lie, H. Liu, Chem. Commun. 51 (2015) 9809-9812.
    [49]
    T.M. Bandhauer, S. Garimella, T.F. Fuller, J. Electrochem. Soc. 158 (2011) R1-R25.
    [50]
    X. Feng, M. Fang, X. He, M. Ouyang, L. Lu, H. Wang, M. Zhang, J. Power Sources 255 (2014) 294-301.
    [51]
    S. Guo, Q. Li, P. Liu, M. Chen, H. Zhou, Nature Commun. 8 (2017) 135-141.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (257) PDF downloads(31) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return