Shurong Gao, Shengfan Fang, Ruozheng Song, Xiaochun Chen, Guangren Yu. Extractive denitrogenation of shale oil using imidazolium ionic liquids. Green Energy&Environment, 2020, 5(2): 173-182. doi: 10.1016/j.gee.2020.04.002
Citation: Shurong Gao, Shengfan Fang, Ruozheng Song, Xiaochun Chen, Guangren Yu. Extractive denitrogenation of shale oil using imidazolium ionic liquids. Green Energy&Environment, 2020, 5(2): 173-182. doi: 10.1016/j.gee.2020.04.002

Extractive denitrogenation of shale oil using imidazolium ionic liquids

doi: 10.1016/j.gee.2020.04.002
  • The potential applications of shale oil as a substitute energy source are adversely influenced due to its high nitrogen content. In this work, four imidazolium ionic liquids (ILs), i.e., 1-butyl-3-methylimidazolium chloride ([Bmim]Cl), 1-butyl-3-methylimidazolium acetate ([Bmim]Ac), 1-butyl-3-methylimidazolium acetate/ZnAc2 ([Bmim]Ac/ZnAc2) and 1-butyl-3-methylimidazolium chloride/ZnAc2 ([Bmim]Cl/ZnAc2), were used to extract the basic nitrides and neutral nitrides from shale oil. The influence of extraction time, temperature, properties of N-compounds, ILs structure, mass ratio of IL/oil, multiple cycles of denitrogenation, physical mixing of ILs and ILs recyclability on extractive denitrogenation was systematically investigated. The denitrogenation performance of all ILs was determined and investigated from micro-level view withσ-profile. It was observed that, ILs composed of anions with weaker HB acceptor capacity, have the higher N-extraction efficiency to the neutral nitrogen compounds with weaker HB acceptor capacity. More than 96% N-extraction efficiency was achieved at the end of a single extraction cycle for time < 10 min under 40 °C and 1 : 1 of IL: oil (w/w), especially 100% N-extraction efficiency was realized for carbazole and indole. The N-extraction efficiency up to 60.1% and 53.7% for real shale oil was realized by [Bmim]Ac and [Bmim]Ac/ZnAc 2, respectively, which are about 10% better than other non-hydrodenitrogenation technologies. Moreover, [Bmim]Ac and [Bmim]Ac/ZnAc2 exhibited almost the same extractive denitrogenation performance after regeneration. This work has developed a new approach to lessen the nitrogen content of shale oil effectively and economically.

     

  • [1]
    H. Yu, S. Li, G and Z. Jin, . Oil Shale, 2010, 27, 126-134.
    [2]
    X. M. Jiang, X. X. Han, Z. G. Cui, . Prog. Energ. Combust, 2007, 33, 552-579.
    [3]
    J. L. Qian, L. Yin, Shale Oil-Alternative Energy for Petroleum. Sinopec Press, 2008.
    [4]
    H. M. Chishti, P. T. Williams, . Fuel, 1999, 78, 1805-1815.
    [5]
    P. T. Williams, , H. M. Chishti, . Fuel, 2001, 80, 957-963.
    [6]
    H. Yang, J. Chen, Y. Briker, R. Szynkarczuk and Z. Ring, , Catal. Today, 2005, 109, 16.
    [7]
    L. C. Gutberlet and R. J. Bertolacini, , Ind. Eng. Chem. Process Des. Dev., 1983, 22 :246-250.
    [8]
    A. Jayaraman, F. H. Yang and R. T. Yang, . Energy Fuels, 2006, 20, 909-914.
    [9]
    D. D. Link, J. P. Baltrus, P. Zandhuis, . Energy Fuels, 2007, 21, 1575-1581.
    [10]
    G. W. Mushrush, E. J. Beal, D. R. Hardy, J. M. Hughes, . Fuel Process. Technol., 1999, 61, 197-210.
    [11]
    Y. Briker, Z. Ring, A. Iacchelli, N. McLean, . Fuel, 2003, 82, 1621-1631.
    [12]
    P. Wiwel, K. Knudesen, P. Zeuthen, D. Whitehurst, . Ind. Eng. Chem. Res., 2000, 39, 533-540.
    [13]
    E. C. Oliveira, M. C. Vaz de Campos, M. R. A. Rodrigues, V. F. Perez, M. I. S. Melecchi, M. G. R. Vale, C. A. Zini, E. B. Caramao, . J. Chromatogr. A, 2006, 1105, 186-190.
    [14]
    M. J. Girgis and B. C. Gates, . Ind. Eng. Chem. Res., 1991, 30, 2021-2058.
    [15]
    J. R. Katzer and R. Sivasubramanian, Catal. Rev. Sci. Eng. Process Catalyst Needs Hydrodenitrogenation 1979, 20, 155-208.
    [16]
    M. Macaud, M. Sevignon, A. Favre-Reguillon, M. Lemaire, E. Schulz, M. Vrinat, . Ind. Eng. Chem. Res., 2004, 43, 7843-7849.
    [17]
    W. S. Min, K. Choi, S. Y. Khang, D. S. Min, J. W. Ryu, K. S. Yoo, J. H. Kim, Method for Manufacturing Cleaner Fuels. WO Patent No., 9967345, 1999.
    [18]
    T. Burkhardt, A. Nicolaos, F. Diehl, Desulfurization, Denitrogenation or Dearomatization of a Hydrocarbon Feedstock by Adsorption over a Solid Spent Sorbent. Eur. Patent No. 1454976, 2004.
    [19]
    M. A. Greaney, J. N. Begasse, M. Lee, Acid Extraction for Denitrogenation of Middle Distillates and Lube Oil Fractions Using Spent Sulfuric Acid from Alkylation Processes. WO Patent No. 2005056726, 2005.
    [20]
    M. Lemaire, E. Schulz, M. Sevignon, M. Macaud, A. FavreReguillon, M. Thomas, R. Loutaty, Polymer-supported π-electron Acceptors for Charge-Transfer-Based Denitrogenation-Desulfurization of Petroleum Fractions. WO Patent No. 0224836, 2002.
    [21]
    T. Koltai, M. Macaud, A. Guevara, E. Schulz, M. Lemaire, R. Bacaud, M. Vrinat, . Appl. Catal. A, 2002, 231, 253-261.
    [22]
    L. L. Xie, A. Favre-Reguillon, S. Pellet-Rostaing, X. X. Wang, X. Fu, J. Estager, M. Vrinat, M. Lemaire, . Ind. Eng. Chem. Res., 2008, 47, 8801-8807.
    [23]
    L. L. Xie, A. Favre-Reguillon, X. X. Wang, X. Z. Fu, M. Vrinat and M. Lemaire, . Ind. Eng. Chem. Res., 2009, 48, 3973.
    [24]
    L. L. Xie, A. Favre-Reguillon, X. X. Wang, X. Z. Fu, S. PelletRostaing, G. Toussaint, C. Geantet, M. Vrinat, M. Lemaire, . Green Chem.., 2008, 10, 524-531.
    [25]
    S. Zhang, Q. Zhang, Z. C. Zhang, . Ind. Eng. Chem. Res., 2004, 43: 614-622.
    [26]
    J. Esser, P. Wasserscheid, A. Jess, . Green Chem.., 2004, 6: 316-322.
    [27]
    A. Agulyansky, L. Agulyansky and V. F. Travkin, . Chem. Eng. Process, 2004, 43, 1231-1237.
    [28]
    I. V. Babich and J. A. Moulijin, . Fuel, 2003, 82, 607-631.
    [29]
    C. Asumana, G. R. Yu, Y. W. Guan, S. D. Yang, S. Z. Zhou, X. C. Chen, . Green Chem.., 2011, 13, 3300-3305.
    [30]
    H. X. Wu, F. X. Ling, S. J. Wang, Y. Bu, . Spec. Petrochem., 2015, 32: 47-51.
    [31]
    J. Eber, P. Wasserscheid, A. Jess, , Green Chem.., 2004, 6, 314-322.
    [32]
    Y. Zhang, D. W. Shang, X. Li, Proceedings of the First BUCT Innovative Entrepreneurship Forum, 2012.
    [33]
    X. C. Chen, S. Yuan, . Separ. Purif. Technol., 2014, 133, 187-193.
    [34]
    X. C. Chen, Y. W. Guan, A. A. Abdeltawab, S. S. Al-Deyab, X. L. Yuan, C. Y. Wang, G. R. Yu, . Fule, 2015, 146, 6-12.
    [35]
    Y. Nie, C. Li, A. Sun, H. Meng, Z. Wang, . Energy Fuels, 2006, 20, 2083-2087.
    [36]
    M. Vilas, E. J. Gonzalez, E. Tojo, . Fluid Phase Equil., 2015, 396, 66-73.
    [37]
    Z. Song, T. Zhou, J. N. Zhang, H. Y. Cheng, L. F. Chen, Z. W. Qi, . Chem. Eng. Sci., 2015, 129:69-77.
    [38]
    T. Zhou, L. Chen, Y. M. Ye, L. F. Chen, Z. W. Qi, . Ind. Eng. Chem. Res., 2012, 51:6256-6264.
    [39]
    A. R. Ferreira, M. G. Freire, J. C. Ribeiro, F. M. Lopes, J. G. Crespo, J. A. P. Coutinho. . Fuel, 2014, 128:314-329.
    [40]
    S. R. Gao, X. C. Chen, R. Abro, A. A. Abdeltawab, S. S. Al-Deyab, G. R. Yu, . Fuel, 2016, 173:164-171.
    [41]
    S. R. Gao, X. C. Chen, R. Abro, A. A. Abdeltawab, S. S. Al-Deyab, G. R. Yu, . Ind. Eng. Chem. Res., 2015, 54:9421-9430.
  • Relative Articles

    [1]Zhengxing Dai, Lei Wang, Xiaohua Lu, Xiaoyan Ji. Melting points of ionic liquids: Review and evaluation.  Green Energy&Environment. doi: 10.1016/j.gee.2024.01.009
    [2]Kai-Lun Bi, Bao-Hua Xu, Wei-Lu Ding, Li-Jun Han, Lin Ji. Mechanism of CO2 reduction in carbonylation reaction promoted by ionic liquid additives: A computational and experimental study.  Green Energy&Environment, 2023, 8(1): 296-307. doi: 10.1016/j.gee.2021.04.008
    [3]Siying Che, Jiachen Guo, Lu Gan, Qiaoxin Xiao, Haoran Li, Yuanbin She, Congmin Wang. A succinct enhanced luminescence strategy for fluorescent ionic liquids and the application for detecting CO2.  Green Energy&Environment, 2022, 7(5): 1093-1101. doi: 10.1016/j.gee.2021.01.010
    [4]Lili Jiang, Ke Mei, Kaihong Chen, Rina Dao, Haoran Li, Congmin Wang. Design and prediction for highly efficient SO2 capture from flue gas by imidazolium ionic liquids.  Green Energy&Environment, 2022, 7(1): 130-136. doi: 10.1016/j.gee.2020.08.008
    [5]Lei Zhang, Mohammad Al-Mamun. Investigating ionic liquids for optimizing lithium metal anode.  Green Energy&Environment, 2022, 7(2): 173-175. doi: 10.1016/j.gee.2021.08.001
    [6]Hong Li, Guanlun Sun, Dongyang Li, Li Xi, Peng Zhou, Xingang Li, Ji Zhang, Xin Gao. Molecular interaction mechanism in the separation of a binary azeotropic system by extractive distillation with ionic liquid.  Green Energy&Environment, 2021, 6(3): 329-338. doi: 10.1016/j.gee.2020.11.025
    [7]Biwen Li, Chenlu Wang, Yaqin Zhang, Yanlei Wang. High CO2 absorption capacity of metal-based ionic liquids: A molecular dynamics study.  Green Energy&Environment, 2021, 6(2): 253-260. doi: 10.1016/j.gee.2020.04.009
    [8]Chenglong Zhang, Jin Wu, Ruixue Wang, En Ma, Liang Wu, Jianfeng Bai, Jingwei Wang. Study of the toluene absorption capacity and mechanism of ionic liquids using COSMO-RS prediction and experimental verification.  Green Energy&Environment, 2021, 6(3): 339-349. doi: 10.1016/j.gee.2020.08.001
    [9]Zhengrun Chen, Hongru Zhang, Huiyuan Li, Ying Xu, Yuanyuan Shen, Zhaoyou Zhu, Jun Gao, Yixin Ma, Yinglong Wang. Separation of n-heptane and tert-butanol by ionic liquids based on COSMO-SAC model.  Green Energy&Environment, 2021, 6(3): 380-391. doi: 10.1016/j.gee.2021.02.008
    [10]Chenhao Jiang, Hongye Cheng, Zexian Qin, Ruizhuan Wang, Lifang Chen, Chen Yang, Zhiwen Qi, Xiucai Liu. COSMO-RS prediction and experimental verification of 1,5-pentanediamine extraction from aqueous solution by ionic liquids.  Green Energy&Environment, 2021, 6(3): 422-431. doi: 10.1016/j.gee.2020.12.011
    [11]Zhenyu Zhang, Zirui Zhao, Binshen Wang, Jiaheng Zhang. Boron based hypergolic ionic liquids: A review.  Green Energy&Environment, 2021, 6(6): 794-822. doi: 10.1016/j.gee.2020.12.002
    [12]Yu-Mei Liu, Yan Zhou, Wen-Qiang Gong, Zhang-Min Li, Chao-Li Wang, Duan-Jian Tao. Highly efficient synthesis of 1-methoxy-2-propanol using ionic liquid catalysts in a micro-tubular circulating reactor.  Green Energy&Environment, 2020, 5(2): 147-153. doi: 10.1016/j.gee.2019.09.001
    [13]Jiming Yang, Xingmei Lu, Yanqiang Zhang, Junli Xu, Yongqing Yang, Qing Zhou. A facile ionic liquid approach to prepare cellulose fiber with good mechanical properties directly from corn stalks.  Green Energy&Environment, 2020, 5(2): 223-231. doi: 10.1016/j.gee.2019.12.004
    [14]Jianji Wang. Innovating ionic liquids as repairable electronics for liquid robots.  Green Energy&Environment, 2020, 5(2): 122-123. doi: 10.1016/j.gee.2020.04.005
    [15]Zheng Ma, Maria Forsyth, Douglas R. MacFarlane, Mega Kar. Ionic liquid/tetraglyme hybrid Mg[TFSI]2 electrolytes for rechargeable Mg batteries.  Green Energy&Environment, 2019, 4(2): 146-153. doi: 10.1016/j.gee.2018.10.003
    [16]Wei Hui, Yan Zhou, Yan Dong, Zhi-Jun Cao, Fei-Qiang He, Min-Zhong Cai, Duan-Jian Tao. Efficient hydrolysis of hemicellulose to furfural by novel superacid SO4H-functionalized ionic liquids.  Green Energy&Environment, 2019, 4(1): 49-55. doi: 10.1016/j.gee.2018.06.002
    [17]Haruki Watanabe, Takuro Komura, Ryo Matsumoto, Kenta Ito, Hiroshi Nakayama, Toshiki Nokami, Toshiyuki Itoh. Design of ionic liquids as liquid desiccant for an air conditioning system.  Green Energy&Environment, 2019, 4(2): 139-145. doi: 10.1016/j.gee.2018.12.005
    [18]Akio Kamimura, Yuto Shiramatsu, Takuji Kawamoto. Depolymerization of polyamide 6 in hydrophilic ionic liquids.  Green Energy&Environment, 2019, 4(2): 166-170. doi: 10.1016/j.gee.2019.01.002
    [19]Junfeng Wang, Camille Petit, Xiangping Zhang, Ah-Hyung Alissa Park. Simultaneous measurement of CO2 sorption and swelling of phosphate-based ionic liquid.  Green Energy&Environment, 2016, 1(3): 258-265. doi: 10.1016/j.gee.2016.11.004
    [20]Zhongde Dai, Muhammad Usman, Magne Hillestad, Liyuan Deng. Modelling of a tubular membrane contactor for pre-combustion CO2 capture using ionic liquids: Influence of the membrane configuration, absorbent properties and operation parameters.  Green Energy&Environment, 2016, 1(3): 266-275. doi: 10.1016/j.gee.2016.11.006
  • Cited by

    Periodical cited type(36)

    1. Zarin, L., Saien, J., Jafari, F. et al. Simultaneous extraction of sulfur and nitrogen contents from fuel: Emphasizing the recent progress of the green solvents: A review. Journal of Molecular Liquids, 2024, 415: 126276. doi:10.1016/j.molliq.2024.126276
    2. Gao, J., Liu, J., Fang, R. et al. Efficient extraction of neutral heterocyclic nitrogen compounds from simulated coal-based products with easily prepared multisite morpholine-based ionic liquid. Journal of Molecular Liquids, 2024, 408: 125380. doi:10.1016/j.molliq.2024.125380
    3. Li, H., Zhu, B., Ding, X. Application of ionic liquid extractant in enhanced separation of 2-propanol-n-hexane azeotrope system. Journal of Physics Condensed Matter, 2024, 36(26): 265902. doi:10.1088/1361-648X/ad3879
    4. Gallo-García, L.A., Marciano, C.H., Freire, N.V. et al. Liquid-liquid phase of imidazolium-based ionic liquids in n-butyl acetate + n-butanol mixtures: Experimental measurements, quality testing, phase stability, thermodynamic modeling. Journal of Industrial and Engineering Chemistry, 2024, 134: 260-270. doi:10.1016/j.jiec.2023.12.056
    5. Wu, P., Song, X., Chen, L. et al. Few-layered hexagonal boron nitride nanosheets stabilized Pt NPs for oxidation promoted adsorptive desulfurization of fuel oil. Green Energy and Environment, 2024, 9(3): 495-506. doi:10.1016/j.gee.2022.08.003
    6. Hu, Y., Yue, H., Huang, S. et al. Biocompatible diimidazolium based ionic liquid systems for enhancing the solubility of paclitaxel. Green Chemistry, 2024, 26(7): 4013-4023. doi:10.1039/d3gc04333a
    7. Malik, T., Naeem, A., Abbott, A.P. et al. Ternary deep eutectic solvents for efficient denitrogenation of a model oil: thermodynamics, extraction efficiency, and recycling performance. Chemical Papers, 2024, 78(4): 2649-2660. doi:10.1007/s11696-023-03269-2
    8. Solov'ev, V.O., Solov'eva, S.V., Zakhodyaeva, Y.A. et al. Extractive denitrogenization of liquid model fuel using polyethylene glycol methyl ether 350. Canadian Journal of Chemical Engineering, 2024, 102(2): 703-712. doi:10.1002/cjce.25096
    9. Ahmed, I., Jhung, S.H. Effective aerobic oxidative denitrogenation of model fuel with metal-free porous carbon derived from phytic acid-loaded polyaniline. Chemical Engineering Journal, 2024, 479: 147679. doi:10.1016/j.cej.2023.147679
    10. Waghulde, V.S., Sawant, K.C., Dhanmane, S.A. et al. A State-of-the-Art Valorization of Molten Tetrabutylammonium Bromide in the Synthesis of Ionic Liquids. Russian Journal of Organic Chemistry, 2023, 59(Suppl 1): S74-S83. doi:10.1134/S1070428023130079
    11. Ci, F., Zhang, T., Zhang, L. Efficient separation of indole from fossil fuel pyrolysis products by carboxylic acid non-aromatic ring ionic liquids: Experiment and mechanism exploration. Journal of Molecular Liquids, 2023, 391: 123429. doi:10.1016/j.molliq.2023.123429
    12. Zuo, Y., Wu, J., Chen, X. et al. Green and low-cost deep eutectic solvents for efficient extraction of basic and non-basic nitrides in simulated oils. Separation and Purification Technology, 2023, 325: 124714. doi:10.1016/j.seppur.2023.124714
    13. Shi, J., Yue, C., Hou, J. et al. Study of Nitrogen Compound Migration during the Pyrolysis of Longkou Oil Shale with Thermal Bitumen as the Intermediate. Energies, 2023, 16(15): 5647. doi:10.3390/en16155647
    14. Kumar, K., Bharti, A., Kumar, A. et al. Choline based deep eutectic solvent for denitrogenation of liquid fuel: A molecular dynamics study. Journal of Molecular Liquids, 2023, 382: 121862. doi:10.1016/j.molliq.2023.121862
    15. Gao, P., Yang, L., Wang, J. et al. Integrated investigation for extractive denitrogenation of fuel oils with Eco-friendly Piperazine-Based ionic liquids. Fuel, 2023, 337: 127187. doi:10.1016/j.fuel.2022.127187
    16. Hu, Y., Xing, Y., Ye, P. et al. The antibacterial activity and mechanism of imidazole chloride ionic liquids on Staphylococcus aureus. Frontiers in Microbiology, 2023, 14: 1109972. doi:10.3389/fmicb.2023.1109972
    17. Yang, H., Wang, D., Gao, J. et al. Effect of 2-Pyrrolidone Protic Ionic Liquids on Removal of Pyridine from Fossil Fuel Model Mixtures. Chemical Engineering and Technology, 2023, 46(2): 383-389. doi:10.1002/ceat.202200443
    18. Shu, C., Cheng, H., Zhao, M. et al. Synthesis of deep eutectic solvents based on triethylamine and organic acids and their application in fuel oil denitrogenation: A theoretical and experimental study. Journal of Molecular Liquids, 2023, 369: 120863. doi:10.1016/j.molliq.2022.120863
    19. Zhao, D., Xiong, Y., Wang, Y. et al. Separation of anthracene and carbazole from crude anthracene via imidazolium-based ionic liquids. Fuel, 2023, 331: 125704. doi:10.1016/j.fuel.2022.125704
    20. Dai, Y., Shi, L., Liu, D. et al. Simultaneous Extraction of Both Basic and Non-basic N-Compounds from Oil via Triethylene Glycol-Metal Complex Solvent: Performance and Behavior. Energy and Fuels, 2022, 36(15): 8189-8198. doi:10.1021/acs.energyfuels.2c01546
    21. Zhao, D., Liu, C., Wang, Y. et al. Ionic liquids design for efficient separation of anthracene and carbazole. Separation and Purification Technology, 2022, 281: 119892. doi:10.1016/j.seppur.2021.119892
    22. He, Y., Guo, Y., Yan, F. et al. Density functional theory study of adsorption of ionic liquids on graphene oxide surface. Chemical Engineering Science, 2021, 245: 116946. doi:10.1016/j.ces.2021.116946
    23. Wei, C., Jiang, K., Fang, T. et al. Effects of anions and alkyl chain length of imidazolium-based ionic liquids at the Au (111) surface on interfacial structure: a first-principles study. Green Chemical Engineering, 2021, 2(4): 402-411. doi:10.1016/j.gce.2021.07.006
    24. Zhang, T., Wang, D., Fang, R. et al. Intermolecular Interaction and Extraction Explorations for Separation of High-Boiling Neutral Nitrogen Compounds Using Biodegradable Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2021, 9(47): 15839-15848. doi:10.1021/acssuschemeng.1c05381
    25. Zhang, Z., Li, Y., Gao, J. et al. Removal of pyridine, quinoline, and aniline from oil by extraction with aqueous solution of (Hydroxy)quinolinium and benzothiazolium ionic liquids in various ways. Separations, 2021, 8(11): 216. doi:10.3390/separations8110216
    26. Liu, Q., Zhang, T., Gao, P. et al. Separation of indole by designed ionic liquids with dual functional chemical sites: Mechanism exploration and experimental validation. Journal of Environmental Chemical Engineering, 2021, 9(5): 105971. doi:10.1016/j.jece.2021.105971
    27. Liu, L., Xie, W., Liu, X. et al. Extractive Removal of Basic and Neutral Nitrogen Compounds from Naphtha and Kerosene by Deep Eutectic Solvents Based on Triethylamine and Aromatic Acids. Petroleum Chemistry, 2021, 61(9): 1052-1060. doi:10.1134/S0965544121090139
    28. Hu, K., Gao, H., Nie, Y. et al. Efficient selective separation of yttrium from holmium and erbium using carboxyl functionalized ionic liquids. Separation and Purification Technology, 2021, 269: 118774. doi:10.1016/j.seppur.2021.118774
    29. Chen, Z., Zhang, H., Li, H. et al. Separation of n-heptane and tert-butanol by ionic liquids based on COSMO-SAC model. Green Energy and Environment, 2021, 6(3): 380-391. doi:10.1016/j.gee.2021.02.008
    30. Jiang, C., Cheng, H., Qin, Z. et al. COSMO-RS prediction and experimental verification of 1, 5-pentanediamine extraction from aqueous solution by ionic liquids. Green Energy and Environment, 2021, 6(3): 422-431. doi:10.1016/j.gee.2020.12.011
    31. Zhang, T., Bing, X., Wang, D. et al. Extraction and multi-scale mechanism explorations for separating indole from coal tar via tetramethylguanidine-based ionic liquids. Journal of Environmental Chemical Engineering, 2021, 9(3): 105255. doi:10.1016/j.jece.2021.105255
    32. Paucar, N.E., Kiggins, P., Blad, B. et al. Ionic liquids for the removal of sulfur and nitrogen compounds in fuels: a review. Environmental Chemistry Letters, 2021, 19(2): 1205-1228. doi:10.1007/s10311-020-01135-1
    33. Mosayebi, E., Azizian, S., Yarie, M. et al. A super-extractant for denitrogenation of liquid fuel: Phosphonium based zwitterionic liquid. Journal of Molecular Liquids, 2021, 326: 115326. doi:10.1016/j.molliq.2021.115326
    34. Gao, S., Jin, J., Abro, M. et al. Selection of ionic liquid for extraction processes: Special case study of extractive desulfurization. Chemical Engineering Research and Design, 2021, 167: 63-72. doi:10.1016/j.cherd.2020.12.020
    35. Gao, S., Jin, J., Abro, M. et al. How to select ionic liquids as extracting agents systematically: A special case study for extractive denitrification processes. RSC Advances, 2020, 11(2): 700-710. doi:10.1039/d0ra09316e
    36. Zhu, X., Sun, J., Yan, X. Prediction of favorable areas for shale gas in the southern longmaxi formation based on analytic hierarchy process. Fresenius Environmental Bulletin, 2020, 29(12): 10881-10889.

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.8 %FULLTEXT: 24.8 %META: 70.7 %META: 70.7 %PDF: 4.4 %PDF: 4.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.4 %其他: 4.4 %China: 63.7 %China: 63.7 %Iran (ISLAMIC Republic Of): 1.1 %Iran (ISLAMIC Republic Of): 1.1 %Seychelles: 0.4 %Seychelles: 0.4 %Thailand: 1.1 %Thailand: 1.1 %United States: 29.3 %United States: 29.3 %其他ChinaIran (ISLAMIC Republic Of)SeychellesThailandUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (189) PDF downloads(12) Cited by(37)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return