Citation: | Shurong Gao, Shengfan Fang, Ruozheng Song, Xiaochun Chen, Guangren Yu. Extractive denitrogenation of shale oil using imidazolium ionic liquids. Green Energy&Environment, 2020, 5(2): 173-182. doi: 10.1016/j.gee.2020.04.002 |
[1] |
H. Yu, S. Li, G and Z. Jin, . Oil Shale, 2010, 27, 126-134.
|
[2] |
X. M. Jiang, X. X. Han, Z. G. Cui, . Prog. Energ. Combust, 2007, 33, 552-579.
|
[3] |
J. L. Qian, L. Yin, Shale Oil-Alternative Energy for Petroleum. Sinopec Press, 2008.
|
[4] |
H. M. Chishti, P. T. Williams, . Fuel, 1999, 78, 1805-1815.
|
[5] |
P. T. Williams, , H. M. Chishti, . Fuel, 2001, 80, 957-963.
|
[6] |
H. Yang, J. Chen, Y. Briker, R. Szynkarczuk and Z. Ring, , Catal. Today, 2005, 109, 16.
|
[7] |
L. C. Gutberlet and R. J. Bertolacini, , Ind. Eng. Chem. Process Des. Dev., 1983, 22 :246-250.
|
[8] |
A. Jayaraman, F. H. Yang and R. T. Yang, . Energy Fuels, 2006, 20, 909-914.
|
[9] |
D. D. Link, J. P. Baltrus, P. Zandhuis, . Energy Fuels, 2007, 21, 1575-1581.
|
[10] |
G. W. Mushrush, E. J. Beal, D. R. Hardy, J. M. Hughes, . Fuel Process. Technol., 1999, 61, 197-210.
|
[11] |
Y. Briker, Z. Ring, A. Iacchelli, N. McLean, . Fuel, 2003, 82, 1621-1631.
|
[12] |
P. Wiwel, K. Knudesen, P. Zeuthen, D. Whitehurst, . Ind. Eng. Chem. Res., 2000, 39, 533-540.
|
[13] |
E. C. Oliveira, M. C. Vaz de Campos, M. R. A. Rodrigues, V. F. Perez, M. I. S. Melecchi, M. G. R. Vale, C. A. Zini, E. B. Caramao, . J. Chromatogr. A, 2006, 1105, 186-190.
|
[14] |
M. J. Girgis and B. C. Gates, . Ind. Eng. Chem. Res., 1991, 30, 2021-2058.
|
[15] |
J. R. Katzer and R. Sivasubramanian, Catal. Rev. Sci. Eng. Process Catalyst Needs Hydrodenitrogenation 1979, 20, 155-208.
|
[16] |
M. Macaud, M. Sevignon, A. Favre-Reguillon, M. Lemaire, E. Schulz, M. Vrinat, . Ind. Eng. Chem. Res., 2004, 43, 7843-7849.
|
[17] |
W. S. Min, K. Choi, S. Y. Khang, D. S. Min, J. W. Ryu, K. S. Yoo, J. H. Kim, Method for Manufacturing Cleaner Fuels. WO Patent No., 9967345, 1999.
|
[18] |
T. Burkhardt, A. Nicolaos, F. Diehl, Desulfurization, Denitrogenation or Dearomatization of a Hydrocarbon Feedstock by Adsorption over a Solid Spent Sorbent. Eur. Patent No. 1454976, 2004.
|
[19] |
M. A. Greaney, J. N. Begasse, M. Lee, Acid Extraction for Denitrogenation of Middle Distillates and Lube Oil Fractions Using Spent Sulfuric Acid from Alkylation Processes. WO Patent No. 2005056726, 2005.
|
[20] |
M. Lemaire, E. Schulz, M. Sevignon, M. Macaud, A. FavreReguillon, M. Thomas, R. Loutaty, Polymer-supported π-electron Acceptors for Charge-Transfer-Based Denitrogenation-Desulfurization of Petroleum Fractions. WO Patent No. 0224836, 2002.
|
[21] |
T. Koltai, M. Macaud, A. Guevara, E. Schulz, M. Lemaire, R. Bacaud, M. Vrinat, . Appl. Catal. A, 2002, 231, 253-261.
|
[22] |
L. L. Xie, A. Favre-Reguillon, S. Pellet-Rostaing, X. X. Wang, X. Fu, J. Estager, M. Vrinat, M. Lemaire, . Ind. Eng. Chem. Res., 2008, 47, 8801-8807.
|
[23] |
L. L. Xie, A. Favre-Reguillon, X. X. Wang, X. Z. Fu, M. Vrinat and M. Lemaire, . Ind. Eng. Chem. Res., 2009, 48, 3973.
|
[24] |
L. L. Xie, A. Favre-Reguillon, X. X. Wang, X. Z. Fu, S. PelletRostaing, G. Toussaint, C. Geantet, M. Vrinat, M. Lemaire, . Green Chem.., 2008, 10, 524-531.
|
[25] |
S. Zhang, Q. Zhang, Z. C. Zhang, . Ind. Eng. Chem. Res., 2004, 43: 614-622.
|
[26] |
J. Esser, P. Wasserscheid, A. Jess, . Green Chem.., 2004, 6: 316-322.
|
[27] |
A. Agulyansky, L. Agulyansky and V. F. Travkin, . Chem. Eng. Process, 2004, 43, 1231-1237.
|
[28] |
I. V. Babich and J. A. Moulijin, . Fuel, 2003, 82, 607-631.
|
[29] |
C. Asumana, G. R. Yu, Y. W. Guan, S. D. Yang, S. Z. Zhou, X. C. Chen, . Green Chem.., 2011, 13, 3300-3305.
|
[30] |
H. X. Wu, F. X. Ling, S. J. Wang, Y. Bu, . Spec. Petrochem., 2015, 32: 47-51.
|
[31] |
J. Eber, P. Wasserscheid, A. Jess, , Green Chem.., 2004, 6, 314-322.
|
[32] |
Y. Zhang, D. W. Shang, X. Li, Proceedings of the First BUCT Innovative Entrepreneurship Forum, 2012.
|
[33] |
X. C. Chen, S. Yuan, . Separ. Purif. Technol., 2014, 133, 187-193.
|
[34] |
X. C. Chen, Y. W. Guan, A. A. Abdeltawab, S. S. Al-Deyab, X. L. Yuan, C. Y. Wang, G. R. Yu, . Fule, 2015, 146, 6-12.
|
[35] |
Y. Nie, C. Li, A. Sun, H. Meng, Z. Wang, . Energy Fuels, 2006, 20, 2083-2087.
|
[36] |
M. Vilas, E. J. Gonzalez, E. Tojo, . Fluid Phase Equil., 2015, 396, 66-73.
|
[37] |
Z. Song, T. Zhou, J. N. Zhang, H. Y. Cheng, L. F. Chen, Z. W. Qi, . Chem. Eng. Sci., 2015, 129:69-77.
|
[38] |
T. Zhou, L. Chen, Y. M. Ye, L. F. Chen, Z. W. Qi, . Ind. Eng. Chem. Res., 2012, 51:6256-6264.
|
[39] |
A. R. Ferreira, M. G. Freire, J. C. Ribeiro, F. M. Lopes, J. G. Crespo, J. A. P. Coutinho. . Fuel, 2014, 128:314-329.
|
[40] |
S. R. Gao, X. C. Chen, R. Abro, A. A. Abdeltawab, S. S. Al-Deyab, G. R. Yu, . Fuel, 2016, 173:164-171.
|
[41] |
S. R. Gao, X. C. Chen, R. Abro, A. A. Abdeltawab, S. S. Al-Deyab, G. R. Yu, . Ind. Eng. Chem. Res., 2015, 54:9421-9430.
|
[1] | Zhengxing Dai, Lei Wang, Xiaohua Lu, Xiaoyan Ji. Melting points of ionic liquids: Review and evaluation. Green Energy&Environment. doi: 10.1016/j.gee.2024.01.009 |
[2] | Kai-Lun Bi, Bao-Hua Xu, Wei-Lu Ding, Li-Jun Han, Lin Ji. Mechanism of CO2 reduction in carbonylation reaction promoted by ionic liquid additives: A computational and experimental study. Green Energy&Environment, 2023, 8(1): 296-307. doi: 10.1016/j.gee.2021.04.008 |
[3] | Siying Che, Jiachen Guo, Lu Gan, Qiaoxin Xiao, Haoran Li, Yuanbin She, Congmin Wang. A succinct enhanced luminescence strategy for fluorescent ionic liquids and the application for detecting CO2. Green Energy&Environment, 2022, 7(5): 1093-1101. doi: 10.1016/j.gee.2021.01.010 |
[4] | Lili Jiang, Ke Mei, Kaihong Chen, Rina Dao, Haoran Li, Congmin Wang. Design and prediction for highly efficient SO2 capture from flue gas by imidazolium ionic liquids. Green Energy&Environment, 2022, 7(1): 130-136. doi: 10.1016/j.gee.2020.08.008 |
[5] | Lei Zhang, Mohammad Al-Mamun. Investigating ionic liquids for optimizing lithium metal anode. Green Energy&Environment, 2022, 7(2): 173-175. doi: 10.1016/j.gee.2021.08.001 |
[6] | Hong Li, Guanlun Sun, Dongyang Li, Li Xi, Peng Zhou, Xingang Li, Ji Zhang, Xin Gao. Molecular interaction mechanism in the separation of a binary azeotropic system by extractive distillation with ionic liquid. Green Energy&Environment, 2021, 6(3): 329-338. doi: 10.1016/j.gee.2020.11.025 |
[7] | Biwen Li, Chenlu Wang, Yaqin Zhang, Yanlei Wang. High CO2 absorption capacity of metal-based ionic liquids: A molecular dynamics study. Green Energy&Environment, 2021, 6(2): 253-260. doi: 10.1016/j.gee.2020.04.009 |
[8] | Chenglong Zhang, Jin Wu, Ruixue Wang, En Ma, Liang Wu, Jianfeng Bai, Jingwei Wang. Study of the toluene absorption capacity and mechanism of ionic liquids using COSMO-RS prediction and experimental verification. Green Energy&Environment, 2021, 6(3): 339-349. doi: 10.1016/j.gee.2020.08.001 |
[9] | Zhengrun Chen, Hongru Zhang, Huiyuan Li, Ying Xu, Yuanyuan Shen, Zhaoyou Zhu, Jun Gao, Yixin Ma, Yinglong Wang. Separation of n-heptane and tert-butanol by ionic liquids based on COSMO-SAC model. Green Energy&Environment, 2021, 6(3): 380-391. doi: 10.1016/j.gee.2021.02.008 |
[10] | Chenhao Jiang, Hongye Cheng, Zexian Qin, Ruizhuan Wang, Lifang Chen, Chen Yang, Zhiwen Qi, Xiucai Liu. COSMO-RS prediction and experimental verification of 1,5-pentanediamine extraction from aqueous solution by ionic liquids. Green Energy&Environment, 2021, 6(3): 422-431. doi: 10.1016/j.gee.2020.12.011 |
[11] | Zhenyu Zhang, Zirui Zhao, Binshen Wang, Jiaheng Zhang. Boron based hypergolic ionic liquids: A review. Green Energy&Environment, 2021, 6(6): 794-822. doi: 10.1016/j.gee.2020.12.002 |
[12] | Yu-Mei Liu, Yan Zhou, Wen-Qiang Gong, Zhang-Min Li, Chao-Li Wang, Duan-Jian Tao. Highly efficient synthesis of 1-methoxy-2-propanol using ionic liquid catalysts in a micro-tubular circulating reactor. Green Energy&Environment, 2020, 5(2): 147-153. doi: 10.1016/j.gee.2019.09.001 |
[13] | Jiming Yang, Xingmei Lu, Yanqiang Zhang, Junli Xu, Yongqing Yang, Qing Zhou. A facile ionic liquid approach to prepare cellulose fiber with good mechanical properties directly from corn stalks. Green Energy&Environment, 2020, 5(2): 223-231. doi: 10.1016/j.gee.2019.12.004 |
[14] | Jianji Wang. Innovating ionic liquids as repairable electronics for liquid robots. Green Energy&Environment, 2020, 5(2): 122-123. doi: 10.1016/j.gee.2020.04.005 |
[15] | Zheng Ma, Maria Forsyth, Douglas R. MacFarlane, Mega Kar. Ionic liquid/tetraglyme hybrid Mg[TFSI]2 electrolytes for rechargeable Mg batteries. Green Energy&Environment, 2019, 4(2): 146-153. doi: 10.1016/j.gee.2018.10.003 |
[16] | Wei Hui, Yan Zhou, Yan Dong, Zhi-Jun Cao, Fei-Qiang He, Min-Zhong Cai, Duan-Jian Tao. Efficient hydrolysis of hemicellulose to furfural by novel superacid SO4H-functionalized ionic liquids. Green Energy&Environment, 2019, 4(1): 49-55. doi: 10.1016/j.gee.2018.06.002 |
[17] | Haruki Watanabe, Takuro Komura, Ryo Matsumoto, Kenta Ito, Hiroshi Nakayama, Toshiki Nokami, Toshiyuki Itoh. Design of ionic liquids as liquid desiccant for an air conditioning system. Green Energy&Environment, 2019, 4(2): 139-145. doi: 10.1016/j.gee.2018.12.005 |
[18] | Akio Kamimura, Yuto Shiramatsu, Takuji Kawamoto. Depolymerization of polyamide 6 in hydrophilic ionic liquids. Green Energy&Environment, 2019, 4(2): 166-170. doi: 10.1016/j.gee.2019.01.002 |
[19] | Junfeng Wang, Camille Petit, Xiangping Zhang, Ah-Hyung Alissa Park. Simultaneous measurement of CO2 sorption and swelling of phosphate-based ionic liquid. Green Energy&Environment, 2016, 1(3): 258-265. doi: 10.1016/j.gee.2016.11.004 |
[20] | Zhongde Dai, Muhammad Usman, Magne Hillestad, Liyuan Deng. Modelling of a tubular membrane contactor for pre-combustion CO2 capture using ionic liquids: Influence of the membrane configuration, absorbent properties and operation parameters. Green Energy&Environment, 2016, 1(3): 266-275. doi: 10.1016/j.gee.2016.11.006 |
1. | Zarin, L., Saien, J., Jafari, F. et al. Simultaneous extraction of sulfur and nitrogen contents from fuel: Emphasizing the recent progress of the green solvents: A review. Journal of Molecular Liquids, 2024, 415: 126276. doi:10.1016/j.molliq.2024.126276 | |
2. | Gao, J., Liu, J., Fang, R. et al. Efficient extraction of neutral heterocyclic nitrogen compounds from simulated coal-based products with easily prepared multisite morpholine-based ionic liquid. Journal of Molecular Liquids, 2024, 408: 125380. doi:10.1016/j.molliq.2024.125380 | |
3. | Li, H., Zhu, B., Ding, X. Application of ionic liquid extractant in enhanced separation of 2-propanol-n-hexane azeotrope system. Journal of Physics Condensed Matter, 2024, 36(26): 265902. doi:10.1088/1361-648X/ad3879 | |
4. | Gallo-García, L.A., Marciano, C.H., Freire, N.V. et al. Liquid-liquid phase of imidazolium-based ionic liquids in n-butyl acetate + n-butanol mixtures: Experimental measurements, quality testing, phase stability, thermodynamic modeling. Journal of Industrial and Engineering Chemistry, 2024, 134: 260-270. doi:10.1016/j.jiec.2023.12.056 | |
5. | Wu, P., Song, X., Chen, L. et al. Few-layered hexagonal boron nitride nanosheets stabilized Pt NPs for oxidation promoted adsorptive desulfurization of fuel oil. Green Energy and Environment, 2024, 9(3): 495-506. doi:10.1016/j.gee.2022.08.003 | |
6. | Hu, Y., Yue, H., Huang, S. et al. Biocompatible diimidazolium based ionic liquid systems for enhancing the solubility of paclitaxel. Green Chemistry, 2024, 26(7): 4013-4023. doi:10.1039/d3gc04333a | |
7. | Malik, T., Naeem, A., Abbott, A.P. et al. Ternary deep eutectic solvents for efficient denitrogenation of a model oil: thermodynamics, extraction efficiency, and recycling performance. Chemical Papers, 2024, 78(4): 2649-2660. doi:10.1007/s11696-023-03269-2 | |
8. | Solov'ev, V.O., Solov'eva, S.V., Zakhodyaeva, Y.A. et al. Extractive denitrogenization of liquid model fuel using polyethylene glycol methyl ether 350. Canadian Journal of Chemical Engineering, 2024, 102(2): 703-712. doi:10.1002/cjce.25096 | |
9. | Ahmed, I., Jhung, S.H. Effective aerobic oxidative denitrogenation of model fuel with metal-free porous carbon derived from phytic acid-loaded polyaniline. Chemical Engineering Journal, 2024, 479: 147679. doi:10.1016/j.cej.2023.147679 | |
10. | Waghulde, V.S., Sawant, K.C., Dhanmane, S.A. et al. A State-of-the-Art Valorization of Molten Tetrabutylammonium Bromide in the Synthesis of Ionic Liquids. Russian Journal of Organic Chemistry, 2023, 59(Suppl 1): S74-S83. doi:10.1134/S1070428023130079 | |
11. | Ci, F., Zhang, T., Zhang, L. Efficient separation of indole from fossil fuel pyrolysis products by carboxylic acid non-aromatic ring ionic liquids: Experiment and mechanism exploration. Journal of Molecular Liquids, 2023, 391: 123429. doi:10.1016/j.molliq.2023.123429 | |
12. | Zuo, Y., Wu, J., Chen, X. et al. Green and low-cost deep eutectic solvents for efficient extraction of basic and non-basic nitrides in simulated oils. Separation and Purification Technology, 2023, 325: 124714. doi:10.1016/j.seppur.2023.124714 | |
13. | Shi, J., Yue, C., Hou, J. et al. Study of Nitrogen Compound Migration during the Pyrolysis of Longkou Oil Shale with Thermal Bitumen as the Intermediate. Energies, 2023, 16(15): 5647. doi:10.3390/en16155647 | |
14. | Kumar, K., Bharti, A., Kumar, A. et al. Choline based deep eutectic solvent for denitrogenation of liquid fuel: A molecular dynamics study. Journal of Molecular Liquids, 2023, 382: 121862. doi:10.1016/j.molliq.2023.121862 | |
15. | Gao, P., Yang, L., Wang, J. et al. Integrated investigation for extractive denitrogenation of fuel oils with Eco-friendly Piperazine-Based ionic liquids. Fuel, 2023, 337: 127187. doi:10.1016/j.fuel.2022.127187 | |
16. | Hu, Y., Xing, Y., Ye, P. et al. The antibacterial activity and mechanism of imidazole chloride ionic liquids on Staphylococcus aureus. Frontiers in Microbiology, 2023, 14: 1109972. doi:10.3389/fmicb.2023.1109972 | |
17. | Yang, H., Wang, D., Gao, J. et al. Effect of 2-Pyrrolidone Protic Ionic Liquids on Removal of Pyridine from Fossil Fuel Model Mixtures. Chemical Engineering and Technology, 2023, 46(2): 383-389. doi:10.1002/ceat.202200443 | |
18. | Shu, C., Cheng, H., Zhao, M. et al. Synthesis of deep eutectic solvents based on triethylamine and organic acids and their application in fuel oil denitrogenation: A theoretical and experimental study. Journal of Molecular Liquids, 2023, 369: 120863. doi:10.1016/j.molliq.2022.120863 | |
19. | Zhao, D., Xiong, Y., Wang, Y. et al. Separation of anthracene and carbazole from crude anthracene via imidazolium-based ionic liquids. Fuel, 2023, 331: 125704. doi:10.1016/j.fuel.2022.125704 | |
20. | Dai, Y., Shi, L., Liu, D. et al. Simultaneous Extraction of Both Basic and Non-basic N-Compounds from Oil via Triethylene Glycol-Metal Complex Solvent: Performance and Behavior. Energy and Fuels, 2022, 36(15): 8189-8198. doi:10.1021/acs.energyfuels.2c01546 | |
21. | Zhao, D., Liu, C., Wang, Y. et al. Ionic liquids design for efficient separation of anthracene and carbazole. Separation and Purification Technology, 2022, 281: 119892. doi:10.1016/j.seppur.2021.119892 | |
22. | He, Y., Guo, Y., Yan, F. et al. Density functional theory study of adsorption of ionic liquids on graphene oxide surface. Chemical Engineering Science, 2021, 245: 116946. doi:10.1016/j.ces.2021.116946 | |
23. | Wei, C., Jiang, K., Fang, T. et al. Effects of anions and alkyl chain length of imidazolium-based ionic liquids at the Au (111) surface on interfacial structure: a first-principles study. Green Chemical Engineering, 2021, 2(4): 402-411. doi:10.1016/j.gce.2021.07.006 | |
24. | Zhang, T., Wang, D., Fang, R. et al. Intermolecular Interaction and Extraction Explorations for Separation of High-Boiling Neutral Nitrogen Compounds Using Biodegradable Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2021, 9(47): 15839-15848. doi:10.1021/acssuschemeng.1c05381 | |
25. | Zhang, Z., Li, Y., Gao, J. et al. Removal of pyridine, quinoline, and aniline from oil by extraction with aqueous solution of (Hydroxy)quinolinium and benzothiazolium ionic liquids in various ways. Separations, 2021, 8(11): 216. doi:10.3390/separations8110216 | |
26. | Liu, Q., Zhang, T., Gao, P. et al. Separation of indole by designed ionic liquids with dual functional chemical sites: Mechanism exploration and experimental validation. Journal of Environmental Chemical Engineering, 2021, 9(5): 105971. doi:10.1016/j.jece.2021.105971 | |
27. | Liu, L., Xie, W., Liu, X. et al. Extractive Removal of Basic and Neutral Nitrogen Compounds from Naphtha and Kerosene by Deep Eutectic Solvents Based on Triethylamine and Aromatic Acids. Petroleum Chemistry, 2021, 61(9): 1052-1060. doi:10.1134/S0965544121090139 | |
28. | Hu, K., Gao, H., Nie, Y. et al. Efficient selective separation of yttrium from holmium and erbium using carboxyl functionalized ionic liquids. Separation and Purification Technology, 2021, 269: 118774. doi:10.1016/j.seppur.2021.118774 | |
29. | Chen, Z., Zhang, H., Li, H. et al. Separation of n-heptane and tert-butanol by ionic liquids based on COSMO-SAC model. Green Energy and Environment, 2021, 6(3): 380-391. doi:10.1016/j.gee.2021.02.008 | |
30. | Jiang, C., Cheng, H., Qin, Z. et al. COSMO-RS prediction and experimental verification of 1, 5-pentanediamine extraction from aqueous solution by ionic liquids. Green Energy and Environment, 2021, 6(3): 422-431. doi:10.1016/j.gee.2020.12.011 | |
31. | Zhang, T., Bing, X., Wang, D. et al. Extraction and multi-scale mechanism explorations for separating indole from coal tar via tetramethylguanidine-based ionic liquids. Journal of Environmental Chemical Engineering, 2021, 9(3): 105255. doi:10.1016/j.jece.2021.105255 | |
32. | Paucar, N.E., Kiggins, P., Blad, B. et al. Ionic liquids for the removal of sulfur and nitrogen compounds in fuels: a review. Environmental Chemistry Letters, 2021, 19(2): 1205-1228. doi:10.1007/s10311-020-01135-1 | |
33. | Mosayebi, E., Azizian, S., Yarie, M. et al. A super-extractant for denitrogenation of liquid fuel: Phosphonium based zwitterionic liquid. Journal of Molecular Liquids, 2021, 326: 115326. doi:10.1016/j.molliq.2021.115326 | |
34. | Gao, S., Jin, J., Abro, M. et al. Selection of ionic liquid for extraction processes: Special case study of extractive desulfurization. Chemical Engineering Research and Design, 2021, 167: 63-72. doi:10.1016/j.cherd.2020.12.020 | |
35. | Gao, S., Jin, J., Abro, M. et al. How to select ionic liquids as extracting agents systematically: A special case study for extractive denitrification processes. RSC Advances, 2020, 11(2): 700-710. doi:10.1039/d0ra09316e | |
36. | Zhu, X., Sun, J., Yan, X. Prediction of favorable areas for shale gas in the southern longmaxi formation based on analytic hierarchy process. Fresenius Environmental Bulletin, 2020, 29(12): 10881-10889. ![]() |