Volume 6 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
Debing Wang, Wenwen Liang, Zhiheng Zheng, Peiyu Jia, Yunrui Yan, Huaqing Xie, Lingling Wang, Wei Yu. Highly efficient energy harvest via external rotating magnetic field for oil based nanofluid direct absorption solar collector. Green Energy&Environment, 2021, 6(2): 298-307. doi: 10.1016/j.gee.2020.03.014
Citation: Debing Wang, Wenwen Liang, Zhiheng Zheng, Peiyu Jia, Yunrui Yan, Huaqing Xie, Lingling Wang, Wei Yu. Highly efficient energy harvest via external rotating magnetic field for oil based nanofluid direct absorption solar collector. Green Energy&Environment, 2021, 6(2): 298-307. doi: 10.1016/j.gee.2020.03.014

Highly efficient energy harvest via external rotating magnetic field for oil based nanofluid direct absorption solar collector

doi: 10.1016/j.gee.2020.03.014
  • Nanofluids based direct absorption solar collectors (DASCs) are considered as the important alternative for further improve the utilization of solar energy. However the low-quality energy and aggregation of nanoparticles obstructs their large-scale application. In this work, a new method of using magnetic nanofluids in DASCs is proposed. By this method, not only high-quality energy is got as well as the problems of blockage and corrosion in heat exchanger are well avoided. The result shows that the maximum temperature can reach 98 °C under 3 solar irradiations and the photothermal conversion efficiency can be further increased by 12.8% when the concentration is 500 ppm after adding an external rotating magnetic field. The highest viscosity of working fluid reduced by 21% when the concentration is 500 ppm at 95 °C after separating the Fe3O4@C nanoparticles from the nanofluids via magnetic separation technology. Meanwhile, the obtained pure base liquids with high temperature flow to heat exchanger, which also reduces the flow resistance in pipeline and avoids the problems such as blockage and corrosion in heat exchanger. This research promotes a new way for the efficient utilization of solar energy.

     

  • Both authors contributed equally to this work and should be considered co-first authors.
  • loading
  • [1]
    G. Ye, N.Y. Doumon, S. Rousseva, Y.R. Liu, M. Abdu-Aguye, M.A. Loi, J.C. Hummelen, L.J. A. Koster, R.C. Chiechi, ACS Appl. Energy Mater. 2 (2019) 2197-2204.
    [2]
    S.Y. Lim, C.S. Law, M. Markovic, L.F. Marsal, N.H. Voelcker, A.D. Abell, A.Santos, ACS Appl. Energy Mater. 2 (2019)1169-1184.
    [3]
    A. Hirano, R. Ueda, S. Hirayama,Y. Ogushi, Energy 22 (1997) 137-142.
    [4]
    Z. Zheng, C. Chao, W.T. Wu, F.F. Wang, L.L. Du, X.Y. Zhang, Y. Xiong, X.W. He, Y.J. Cai, R.T. K. Kwok, J.W.Y. Lam, X.K. Gao, P.C. Sun, D.L. Phillips, D. Ding, B. Z.Tang, Nat. Commun. 10 (2019) 768.
    [5]
    S.A. Lindley, J.Z. Zhang, ACS Appl. Nano Mater. 2 (2019)1072-1081.
    [6]
    Q.Z. Li, W.L. Hou, F. Peng, H.L. Wang, S. Zhang, D.Y. Dong, S.Y. Wu, H.Q. Zhang, J. Mater. Sci. 54 (2018) 217-227.
    [7]
    J.E. Minardi, H.N. Chuang, Sol. Energy 17 (1975) 179-183.
    [8]
    S.U.S., Choi, J.A., Eastman, Enhancing thermal conductivity of fluids with nanoparticles, United States, 1995, https://www.osti.gov/servlets/purl/196525.
    [9]
    L.F. Chen, H.Q. Xie, Thermochim. Acta. 497 (2010)61-67.
    [10]
    L.L Wang, G.H. Zhu, M.Wang, W. Yu, J.Zeng. X.X.Yu, H.Q. Xie, Q. Li, Sol. Energy 184 (2019) 240-248.
    [11]
    C.A. Wisut, B. Sridevi, F. Chun, F. Derek, P. Gerrard, Nanomaterials Base 7 (2017) 131.1-31.
    [12]
    H.K. Moon, H.L. Sang, H.C. Choi, ACS Nano 3 (2009) 3707-3713.
    [13]
    L.L. Chen, J. Liu, X.M. Fang, Z.G. Zhang, Sol. Energy Mater. Sol. Cells 163 (2017) 125-133.
    [14]
    S. Ma, K. Chen, Y.H. Qiu, L.L. Gong, G.M. Pan, Y.J. Lin, Z.H. Hao, L. Zhou. Q.Q. Wang, J. Mater. Chem. A 7 (2019) 3408-3414.
    [15]
    D.H. Zhu, G.W. Huang, L.Y. Zhang, Y. He, H.Q. Xie, W. Yu, Energy Environ. Mater. 2 (2019) 22-29.
    [16]
    Z.D. Hood, K.P. Kubelick, K.D. Gilroy, D. Vanderlaan, X. Yang, M.X Yang, M.F. Chi, S.Y. Emelianov, Y.N. Xia, Nanoscale 11 (2019) 3013-3020.
    [17]
    M. Mehrali, M.K. Ghatkesar, R. Pecnik, Appl. Energy 224 (2018)103-115.
    [18]
    Y.M. Xuan, Q. Li, W.F. Hu, AIChE J. 49 (2013) 1038-1043.
    [19]
    R. Prasher, P.E. Phelan, P. Bhattacharya, Nano Lett.6 (2006) 1529-1534.
    [20]
    W. Evans, R. Prasher, J. Fish, P. Meakin, P. Phelan, P. Keblinski, Int. J. Heat Mass Transf. 51 (2018) 1431-1438.
    [21]
    O. Jaber, G.F. Naterer, I. Dincer, Heat Mass Transf.. 46 (2010) 999-1012.
    [22]
    X.P. Yang, X.X. Yang, J. Ding, Y.Y. Shao, F.G.F. Qin, R.H. Jiang, Appl. Therm. Eng. 48 (2012) 24-31.
    [23]
    R.W. Bradshaw, J.GCordaro, N.P. Siege, In ASME 2008 2nd International Conference on Energy Sustainability Collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences. American Society of Mechanical Engineers, 2008, pp. 631-637.
    [24]
    Q. Peng, J. Ding, X.L. Wei, J.P. Yang, X.X. Yang, Appl. Energy 87 (2010) 2812-2817.
    [25]
    F. Buttinger, T. Beikircher, M. Proll, W. Scholkopf, Sol. Energy 84 (2010) 1166-1174.
    [26]
    M. Zhang, L. Ding, J. Zheng, L.B Liu, H. Alsulamic, M.A. Kutbic, J.L. Xu. Appl. Surf. Sci. 509 (2020) 145348.
    [27]
    M. Zhang, J. Zheng, J.P. Wang, J.L. Xu, T. Hayat, N.S. Alharbid. Sens. Actuators B Chem. , 282 (2019) 85-95.
    [28]
    M. Zhang, T. Miao, J. Zheng, J.L. Xu, A.M. Asiri, H.M. Marwani. Micropor. Mesopor. Mater. 286 (2019) 207-213.
    [29]
    D.B. Wang, Y.L. Jia, Y. He, L.L Wang, H.Q. Xie, W. Yu, Energy Convers. Manag. 199 (2019) 111996.1-9.
    [30]
    D.B. Wang, Y.L. Jia, Y. He, L.L Wang, H.Q. Xie, W. Yu, J. Colloid Interface Sci. 557 (2019) 266-275.
    [31]
    C. Zeng, W. Weng, T. Lv, W. Xiao. ACS Appl. Mater. Interfaces 10 (2018) 30470-30478.
    [32]
    W.M. Zhang, X.L. Wu, J.S. Hu, Y.G. Guo, L.J. Wan, Adv. Funct. Mater. 18 (2010) 3941-3946.
    [33]
    M. Amjad, G. Raza, Y. Xin, S. Pervaiz, J.L. Xu, X.Z. Du, D.S. Wen, Appl. Energy 206 (2017) 393-400.
    [34]
    R.J. Moffat, J. Fluids Eng. 107 (1985)173-178.
    [35]
    M. Ozaki, S. Kratohvil, E. Matijevic, J. Colloid Interface Sci. 102 (1984)146-151.
    [36]
    S.K. Das, N. Putra, W. Roetzel, Int. J. Heat Mass Transf. 46 (2003) 851-862.
    [37]
    M.J. Chen, Y.R. He, J. Huang, J.Q. Zhu, Int. J. Heat Mass Transf. 108(Part B) (2017) 1894-1900.
    [38]
    W.D. Drotning, Sol. Energy 20 (1978) 313-319.
    [39]
    J. Zeng, Y.M. Xuan, Appl. Energy 212 (2018) 809-819.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (157) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return