Volume 6 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
Wei Feng, Zhuangmei Li, Hongfeng Gao, Qiang Wang, Hongcun Bai, Ping Li. Understanding the molecular structure of HSW coal at atomic level: A comprehensive characterization from combined experimental and computational study. Green Energy&Environment, 2021, 6(1): 150-159. doi: 10.1016/j.gee.2020.03.013
Citation: Wei Feng, Zhuangmei Li, Hongfeng Gao, Qiang Wang, Hongcun Bai, Ping Li. Understanding the molecular structure of HSW coal at atomic level: A comprehensive characterization from combined experimental and computational study. Green Energy&Environment, 2021, 6(1): 150-159. doi: 10.1016/j.gee.2020.03.013

Understanding the molecular structure of HSW coal at atomic level: A comprehensive characterization from combined experimental and computational study

doi: 10.1016/j.gee.2020.03.013
  • In this work, the coal samples from Hongshiwan (HSW) mining area, Ningxia, northwest of China, are characterized by using several modern materials characterization techniques, such as proximate and ultimate analyses, solid state 13C nuclear magnetic resonance (13C NMR), X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy (FT-IR). Then the key information about elements, valence, and chemical bonding for coal molecular structural construction is obtained. The results reveal that the main structure of HSW coal has 75.96% aromatic skeleton in mass. The ratio of aromatic bridge carbon to aromatic peripheral carbon of HSW coal is 0.315, indicating more naphthalene than benzene and anthracene in coal structures. Oxygen predominantly presents in the forms of ether (C–O), carbonyl (CO) and carboxyl (–COO). Nitrogen presents in the forms of both pyridine and pyrrole. Methyl (–CH3) group is predominant in cyclic and aliphatic hydrocarbons. Based on obtained structural information and the approaches of average molecular structure, the single molecular formula of HSW coal is defined as C221H148O28N2, with a molecular weight of 3142.32. Also, the 2D and 3D molecular model of HSW coal are built with computer-aided modeling. The model is optimized and further verified by FT-IR and 13C NMR spectra simulation with quantum chemical calculations. Besides, a more complicated structure of complex model for HSW coal containing 10 single-molecules is also obtained. Therefore, molecular structure of HSW coal has been comprehensively depicted and understood at atomic level from both experimental and quantum chemical approaches in the current work.

     

  • These authors contributed equally to this work.
  • loading
  • [1]
    X.Y. Qian, D. Wang, J. Wang, S. Chen, Resources Policy. (2019) 101447.
    [2]
    N. Aaron, H.L. Gerald, Int. J. Min. Sci. Technol. 25 (2015) 511-521.
    [3]
    Z.W. Peng, X.L. Lin, Z.Z. Li, J.Y. Hwang, B.G. Kim, Y.B. Zhang, G.H. li, T. Jiang, Fuel Process. Technol. 156 (2017) 171-177.
    [4]
    T. Ohkawa, T. Sasai, N. Komoda, S. Murata, M. Nomura, Energy Fuels. 11 (1997) 937-944.
    [5]
    J.P. Mathews, A. Sharma, Fuel. 95 (2012) 19-24.
    [6]
    J.H. Xiang, F.G. Zeng, H.Z. Liang, B.L. Sun, L. Zhang, M.F. Li, J.B. Jia, J. Fuel Chem. Technol. 39 (2011) 481-488.
    [7]
    K. Nakamura, T. Takanohashi, M. Iino, H. Kumagai, M. Sato, S. Yokoyama, Y. Sanada, Energy Fuels. 9 (1995) 1003-1010.
    [8]
    Z.Q. Zhang, Q.N. Kang, S. Wei, T. Yun, G.C. Yan, K.F. Yan, Energy Fuels. 31 (2017) 1310-1317.
    [9]
    J.P. Mathews, A.L. Chaffee, Fuel. 96 (2012) 1-14.
    [10]
    H. Wang, Z.F. Chai, D.Q. Wang, Green Energy Environ.. 2 (2017) 30-41.
    [11]
    Y. Zhao, D.G. Truhlar, Theor. Chem. Acc. 120 (2008) 215-241.
    [12]
    M.R. Weismiller, A.C.T. van Duin, J. Lee, R.A. Yetter, J. Phys. Chem. A. 114 (2010) 5485-5492.
    [13]
    K. Chenoweth, A.C.T. Van Duin, W.A. Goddard, J. Phys. Chem. A. 112 (2008) 1040-1053.
    [14]
    H.H. Zhang, M.Y. Zhu, W. Zhao, L. Song, G. Feng, Green Energy Environ.. 3 (2018) 120-128.
    [15]
    G. Domazetis, B.D. James, Org. Geochem. 37 (2006) 244-259.
    [16]
    J.P. Wang, G.Y. Li, R. Guo, A.Q. Li, Y.H. Liang, Energy Fuels. 31 (2016) 124-132.
    [17]
    D.V. Niekerk, J.P. Mathews, Fuel. 89 (2010) 73-82.
    [18]
    J.X. Liu, Y.Z. Jiang, W. Yao, X. Jiang, X.M. Jiang, Energy Fuels. 33 (2019) 6215-6225.
    [19]
    R.C. Everson, G.N. Okolo, H.W.J.P. Neomagus, J.M. dos Santos, Fuel. 109 (2013) 148-156.
    [20]
    J.X. Liu, L. Luo, J.F. Ma, H. Zhang, X.M. Jiang, Energy Fuels. 30 (2016) 6321-6329.
    [21]
    W.H. Geng, T. Nakajima, H. Takanashi, A. Ohki, Fuel. 88 (2009) 139-144.
    [22]
    M.S. Solum, A.F. Sarofim, R.J. Pugmire, T.H. Fletcher, H.F. Zhang, Energy Fuels. 15 (2001) 961-971.
    [23]
    Q. Wei, Y.G. Tang, Minerals. 8 (2018) 49
    [24]
    M.J. Gao, X.X. Li, C.X. Ren, Z. Wang, Y. Pan, L. Guo, Energy Fuels. 33 (2019) 2848-2858.
    [25]
    J. Wang, Y.Q. He, H. Li, J.D. Yu, W.N. Xie, H. Wei, Fuel. 203 (2017) 764-773.
    [26]
    B. Gong, P.J. Pigram, R.N. Lamb, Fuel. 77 (1998) 1081-1087.
    [27]
    M. Kozlowski, Fuel. 83 (2004) 259-265.
    [28]
    B. Wang, Y.J. Peng, S. Vink, Energy Fuels. 27 (2013) 4869-4874.
    [29]
    J.H. Tong, X.X. Han, S. Wang, X.M. Jiang, Energy Fuels. 25 (2011) 4006-4013.
    [30]
    S.R. Kelemen, M. Afeworki, M.L. Gorbaty, P.J. Kwiatek, M.S. Solum, J.Z. Hu, R.J. Pugmire, Energy Fuels. 16 (2002) 1507-1515.
    [31]
    Y.F. Luo, W.H. Li, J. China Coal Soc. 29 (2004) 339-341.
    [32]
    T. Budinova, N. Petrov, V. Minkova, M. Razvigorova, Fuel. 77 (1998) 577-580.
    [33]
    B. Feng, S.K. Bhatia, J.C. Barry, Energy Fuels. 17 (2003) 744-754.
    [34]
    H. Fujimoto, Carbon. 41 (2003) 1585-1592.
    [35]
    J.V. Ibarra, R. Moliner, A.J. Bonet, Fuel. 73 (1994) 918-924.
    [36]
    K.C. Xie, Structure and Reactivity of Coal, Springer-Verlag Press, New York, 2015, pp. 1-27.
    [37]
    M.J. Iglesias, A. Jimenez, F. Laggoun-Defarge, I. Suarez-Ruiz, Energy Fuels. 9 (1995) 458-466.
    [38]
    W.K. Yang, Oil Gas Geol. 8 (1987) 26-37.
    [39]
    J.H. Xiang, F.G. Zeng, B. Li, L. Zhang, M.F. Li, H.Z. Liang, J. Fuel Chem. Technol. 41 (2013) 391-400.
    [40]
    K.Y. Shi, X.H. Gui, X.X. Tao, J. Long, Y.H. Ji, Energy Fuels. 29 (2015) 3566-3572.
    [41]
    M. Vandenbroucke, C. Largeau, Org. Geochem. 38 (2007) 719-833.
    [42]
    S.W. Bunte, H. Sun, J. Phys. Chem. B 104 (2000) 2477-2489.
    [43]
    K. Wolinski, R. Haacke, J.F. Hinton, P. Pulay, J. Comput. Chem. 18 (1997) 816-825.
    [44]
    J.B. Jia, Y. Wang, F.H. Li, G.Y. Yi, F.G. Zeng, H.Y. Guo, Spectrosc. Spect. Anal. 34 (2014) 47-51.
    [45]
    M. Zheng, X.X. Li, J. Liu, L. Guo, Energy Fuels. 27 (2013) 2942-2951.
    [46]
    M. Zheng, X.X. Li, J. Liu, Z. Wang, X.M. Gong, L. Guo, W.L. Song, Energy Fuels. 28 (2013) 522-534.
    [47]
    Z.S. Li, C.R. Ward, L.W. Gurba, Int. J. Coal Geol. 81 (2010) 242-250.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (186) PDF downloads(18) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return