Volume 6 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
Guang Yang, Shuyan Guan, Sehrish Mehdi, Yanping Fan, Baozhong Liu, Baojun Li. Co-CoOx supported onto TiO2 coated with carbon as a catalyst for efficient and stable hydrogen generation from ammonia borane. Green Energy&Environment, 2021, 6(2): 236-243. doi: 10.1016/j.gee.2020.03.012
Citation: Guang Yang, Shuyan Guan, Sehrish Mehdi, Yanping Fan, Baozhong Liu, Baojun Li. Co-CoOx supported onto TiO2 coated with carbon as a catalyst for efficient and stable hydrogen generation from ammonia borane. Green Energy&Environment, 2021, 6(2): 236-243. doi: 10.1016/j.gee.2020.03.012

Co-CoOx supported onto TiO2 coated with carbon as a catalyst for efficient and stable hydrogen generation from ammonia borane

doi: 10.1016/j.gee.2020.03.012
  • Ammonia borane (AB) can be catalytically hydrolyzed to provide hydrogen at room temperature due to its high potentaial for hydrogen storage. Non-precious metal heterogeneous catalysts have broad application in the field of energy catalysis. In this article, catalysts precursor is obtained from Co-Ti-resorcinol-formaldehyde resin by sol–gel method. Co/TiO2@N-C (CTC) catalyst is prepared by calcining the precursor under high temperature conditions in nitrogen atmosphere. Co-CoOx/TiO2@N-C (COTC) is generated by the controllable oxidation reaction of CTC. The catalyst can effectively promote the release of hydrogen during the hydrolytic dehydrogenation of AB. High hydrogen generation at a specific rate of 5905 mL min−1 gCo−1 is achieved at room temperature. The catalyst retains its 85% initial catalytic activity even for its fifth time use in AB hydrolysis. The synergistic effect among Co, Co3O4 and TiO2 promotes the rate limiting step with dissociation and activation of water molecules by reducing its activation energy. The applied method in this study promotes the development of non-precious metals in catalysis for utilization in clean energy sources.

     

  • loading
  • [1]
    H.L. Jiang, Q. Xu, Catal. Today 170 (2011) 56-63.
    [2]
    N. Armaroli, V. Balzani, ChemSusChem 4 (2011) 21-36.
    [3]
    Y.P. Yuan, L.W. Ruan, J. Barber, S.C. Joachim Loo, C. Xue, Energy Environ. Sci. 7 (2014) 3934-3951.
    [4]
    C.H. Liu, Y.C. Wu, C.C. Chou, B.H. Chen, C.L. Hsueh, J.R. Ku, F. Tsau, Int. J. Hydrogen Energy 37 (2012) 2950-2959.
    [5]
    L. Schlapbach, A. Zuttel, Nature 414 (2001) 353-358.
    [6]
    A. Zuttel, Naturwissenschaften 91 (2004) 157-172.
    [7]
    U.B. Demirci, P. Miele, Energy Environ. Sci. 4 (2011) 3334-3341.
    [8]
    Y. Liu, K. Zhong, M. Gao, J. Wang, H. Pan, Q. Wang, ChemInform 39 (2008) 3521-3527.
    [9]
    I.P. Jain, Int. J. Hydrogen Energy 34 (2009) 7368-7378.
    [10]
    Q.L. Zhu, Q. Xu, Energy Environ. Sci. 8 (2015) 478-512.
    [11]
    A.F. Dalebrook, W. Gan, M. Grasemann, S. Moret, G. Laurenczy, Chem. Commun. 49 (2013) 8735-8751.
    [12]
    X. Zhang, L. Kam, R. Trerise, T.J. Williams, Acc. Chem. Res. 50 (2017) 86-95.
    [13]
    U.B. Demirci, Int. J. Hydrogen Energy 42 (2017) 9978-10013.
    [14]
    Y. Hu, Y. Wang, Z.H. Lu, X. Chen, L. Xiong, Appl. Surf. Sci. 341 (2015) 185-189.
    [15]
    N. Cao, K. Hu, W. Luo, G. Cheng, J. Alloys Compd. 590 (2014) 241-246.
    [16]
    J.W. Park, S.W. Lai, S.O. Cho, Int. J. Hydrogen Energy 40 (2015) 16316-16322.
    [17]
    N. Mohajeri, O. Adebiyi, A. T-Raissi, 16th World Hydrog. Energy Conf. 2006, WHEC 2006 vol. 4 (2006) 3032-3037.
    [18]
    W. Chen, J. Ji, X. Feng, X. Duan, G. Qian, P. Li, X. Zhou, D. Chen, W. Yuan, J. Am. Chem. Soc. 136 (2014) 16736-16739.
    [19]
    S. Akbayrak, Y. Tonbul, S. Ozkar, Appl. Catal. B Environ. 198 (2016) 162-170.
    [20]
    W. da Zhong, X. ke Tian, C. Yang, Z. xin Zhou, X. wen Liu, Y. Li, Int. J. Hydrogen Energy 41 (2016) 15225-15235.
    [21]
    S. Akbayrak, S. Ozkar, ACS Appl. Mater. Interfaces 4 (2012) 6302-6310.
    [22]
    Q. Yao, W. Shi, G. Feng, Z.H. Lu, X. Zhang, D. Tao, D. Kong, X. Chen, J. Power Sources 257 (2014) 293-299.
    [23]
    C. Du, Q. Ao, N. Cao, L. Yang, W. Luo, G. Cheng, Int. J. Hydrogen Energy 40 (2015) 6180-6187.
    [24]
    F. Qiu, L. Li, G. Liu, Y. Wang, C. An, C. Xu, Y. Xu, Y. Wang, L. Jiao, H. Yuan, Int. J. Hydrogen Energy 38 (2013) 7291-7297.
    [25]
    Z.H. Lu, J. Li, A. Zhu, Q. Yao, W. Huang, R. Zhou, R. Zhou, X. Chen, Int. J. Hydrogen Energy 38 (2013) 5330-5337.
    [26]
    F. Qiu, L. Li, G. Liu, Y. Wang, Y. Wang, C. An, Y. Xu, C. Xu, Y. Wang, L. Jiao, H. Yuan, Int. J. Hydrogen Energy 38 (2013) 3241-3249.
    [27]
    L. An, N. Jiang, B. Li, S. Hua, Y. Fu, J. Liu, W. Hao, D. Xia, Z. Sun, J. Mater. Chem. A 6 (2018) 5962-5970.
    [28]
    O. Metin, V. Mazumder, S. Ozkar, S. Sun, J. Am. Chem. Soc. 132 (2010) 1468-1469.
    [29]
    C. Wang, J. Tuninetti, Z. Wang, C. Zhang, R. Ciganda, L. Salmon, S. Moya, J. Ruiz, D. Astruc, J. Am. Chem. Soc. 139 (2017) 11610-11615.
    [30]
    D. Gao, Y. Zhang, L. Zhou, K. Yang, Appl. Surf. Sci. 427 (2018) 114-122.
    [31]
    J. Li, Q.L. Zhu, Q. Xu, Catal. Sci. Technol. 5 (2015) 525-530.
    [32]
    S. Yildiz, N. Aktas, N. Sahiner, Int. J. Hydrogen Energy 39 (2014) 14690-14700.
    [33]
    Z. Zhang, X. Wei, Y. Yao, Z. Chen, A. Zhang, W. Li, W.D. Wu, Z. Wu, X.D. Chen, D. Zhao, Small 13 (2017) 1-8.
    [34]
    H. Wang, Y. Zhao, F. Cheng, Z. Tao, J. Chen, Catal. Sci. Technol. 6 (2016) 3443-3448.
    [35]
    F. Zhang, C. Ma, Y. Zhang, H. Li, D. Fu, X. Du, X.M. Zhang, J. Power Sources 399 (2018) 89-97.
    [36]
    X. Lin, Z. Nie, L. Zhang, S. Mei, Y. Chen, B. Zhang, R. Zhu, Z. Liu, Green Chem.. 19 (2017) 2164-2173.
    [37]
    T. Kamegawa, T. Nakaue, Chem. Commun. 51 (2015) 16802-16805.
    [38]
    S.M. Gupta, M. Tripathi, Chin. Sci. Bull. 56 (2011) 1639-1657.
    [39]
    K. Mori, K. Miyawaki, H. Yamashita, ACS Catal.. 6 (2016) 3128-3135.
    [40]
    F. Pei, T.H. An, J. Zang, X.J. Zhao, X.L. Fang, M.S. Zheng, Q.F. Dong, N.F. Zheng, Adv. Energy Mater. 6 (2016).
    [41]
    D.A.H. Hanaor, C.C. Sorrell, J. Mater. Sci. 46 (2011) 855-874.
    [42]
    S. Duan, G. Han, Y. Su, X. Zhang, Y. Liu, X. Wu, B. Li, Langmuir 32 (2016) 6272-6281.
    [43]
    B. Krauss, P. Nemes-Incze, V. Skakalova, L.P. Biro, K. Von Klitzing, J.H. Smet, Nano Lett.. 10 (2010) 4544-4548.
    [44]
    X. Yang, F. Cheng, Z. Tao, J. Chen, J. Power Sources 196 (2011) 2785-2789.
    [45]
    X. Wu, X. Zhang, G. Han, Y. Liu, B. Liu, J. Gao, Y. Fan, B. Li, ACS Sustain. Chem. Eng. 6 (2018) 8427-8436.
    [46]
    Y. Zhang, C. Wang, H. Hou, G. Zou, X. Ji, Adv. Energy Mater. 7 (2017).
    [47]
    Q. Chen, F. Ji, T. Liu, P. Yan, W. Guan, X. Xu, Chem. Eng. J. 229 (2013) 57-65.
    [48]
    C.D. Si, Z.X. Wu, J. Wang, Z.H. Lu, X.F. Xu, J. Sen Li, ACS Sustain. Chem. Eng. 7 (2019) 9737-9742.
    [49]
    J. Manna, S. Akbayrak, S. Ozkar, Appl. Catal. B Environ. 208 (2017) 104-115.
    [50]
    Y. Liu, G. Han, X. Zhang, C. Xing, C. Du, H. Cao, B. Li, Nano Res.. 10 (2017) 3035-3048.
    [51]
    H. Zhang, Y. Fan, B. Liu, Y. Liu, S. Ashraf, X. Wu, G. Han, J. Gao, B. Li, ACS Sustain. Chem. Eng. 7 (2019) 9782-9792.
    [52]
    Y. Zhang, Y. Lin, H. Jiang, C. Wu, H. Liu, C. Wang, S. Chen, T. Duan, L. Song, Small 14 (2018) 1-9.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (143) PDF downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return