Volume 6 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
Wenfen Wu, Chenye Wang, Xingrui Wang, Huiquan Li. Removal of V and Fe from spent denitrification catalyst by using oxalic acid: Study of dissolution kinetics and toxicity. Green Energy&Environment, 2021, 6(5): 660-669. doi: 10.1016/j.gee.2020.03.011
Citation: Wenfen Wu, Chenye Wang, Xingrui Wang, Huiquan Li. Removal of V and Fe from spent denitrification catalyst by using oxalic acid: Study of dissolution kinetics and toxicity. Green Energy&Environment, 2021, 6(5): 660-669. doi: 10.1016/j.gee.2020.03.011

Removal of V and Fe from spent denitrification catalyst by using oxalic acid: Study of dissolution kinetics and toxicity

doi: 10.1016/j.gee.2020.03.011
  • The selective dissolution of V and Fe from spent denitrification catalyst (SDC) with oxalic acid was investigated to minimise their environmental effects. The dissolution kinetics of different elements from SDC by using 0.1-1.5 mol L-1 oxalic acid concentration was studied at 60℃-90℃. V and Fe were preferentially released (65% and 81%) compared with Al, Ti and W within 5 min due to the redox reactions of oxalic acid. The dissolved fractions of Fe, V, Al, W and Ti increased with the increase of oxalic acid concentration and reaction temperature. The dissolution kinetic experiments were analysed and controlled diffusion with n < 0.5 according to the Avrami dissolve reaction model (R2 > 0.92). The Arrhenius parameters of the Ea values of Ti, W, V, Fe and Al from SDC with oxalic acid were 30, 26, 20, 19 and 11 kJ mol-1, respectively. The obtained Avrami equation of V and Fe was successfully used to predict their leaching behaviour in oxalic acid. Toxicity characteristic leaching procedure revealed that the toxicity risk of V and Fe metals from SDC after leaching with oxalic acid decreased to below 5 mg kg-1 residua. Overall, the leaching residua by oxalic acid indicated its safety for the environment.

     

  • loading
  • [1]
    K. Staszak, K. Wieszczycka, Phys. Sci. Rev. 3(2018) 20180023.
    [2]
    X. Li, J. Li, Y. Peng, W. Si, X. He, J. Hao, Environ. Sci. Technol. 49(2015) 9971-9978.
    [3]
    J.W. Kim, W.G. Lee, I.S. Hwang, J.Y. Lee, C. Han, J. Ind. Eng. Chem. 28(2015) 73-77.
    [4]
    Z. Zhao, M. Guo, M. Zhang, J. Hazard. Mater. 286(2015) 402-409.
    [5]
    Q.C. Li, Z.Y. Liu, Q.Y. Liu, Ind. Eng. Chem. Res. 53(2014) 2956-2962.
    [6]
    O. Kröocher, M. Elsener, Appl. Catal. B Environ. 77(2008) 215-227.
    [7]
    M. Marafi, A. Stanislaus, Resour. Conserv. Recy. 52(2008) 859-873.
    [8]
    A. Akcil, F. Veglio, F. Ferella, M.D. Okudan, A. Tuncuk, Waste Manage. 45(2015) 420-433.
    [9]
    L. Wang, S. Su, M. Qing, Z. Dai, Z. Sun, L. Liu, Y. Wang, S. Hu, K. Xu, J. Xiang, Fuel 252(2019) 164-171.
    [10]
    B. Ma, Z. Qiu, J. Yang, C. Qin, J. Fan, A. Wei, Y. Li, Waste Biomass Valorization 10(2019) 3037-3044.
    [11]
    Q. Zhang, Y. Wu, T. Zuo, ACS Sustain. Chem. Eng. 6(2018) 3091-3101.
    [12]
    I.-H. Choi, G. Moon, J.-Y. Lee, R.K. Jyothi, Hydrometallurgy 178(2018) 137-145.
    [13]
    Y. Huo, Z. Chang, W. Li, S. Liu, B. Dong, Waste Biomass Valorization 6(2015) 159-165.
    [14]
    M. Li, B. Liu, X. Wang, X. Yu, S. Zheng, H. Du, D. Dreisinger, Y. Zhang, Chem. Eng. J. 342(2018) 1-8.
    [15]
    Y. Peng, J. Li, W. Shi, J. Xu, J. Hao, Environ. Sci. Technol. 46(2012) 12623-12629.
    [16]
    F. Tang, B. Xu, H. Shi, J. Qiu, Y. Fan, Appl. Catal. B Environ. 94(2010) 71-76.
    [17]
    Y. Xue, Y. Zhang, Y. Zhang, S. Zheng, Y. Zhang, W. Jin, Chem. Eng. J. 325(2017) 544-553.
    [18]
    Z. Dai, L. Wang, H. Tang, Z. Sun, W. Liu, Y. Sun, S. Su, S. Hu, Y. Wang, K. Xu, L. Liu, P. Ling, J. Xiang, Chemosphere 207(2018) 440-448.
    [19]
    N.B. Ress, B.J. Chou, R.A. Renne, J.A. Dill, R.A. Miller, J.H. Roycroft, J.R. Hailey, J.K. Haseman, J.R. Bucher, Toxicol. Sci. 74(2003) 287-296.
    [20]
    J. Yang, Y. Teng, J. Wu, H. Chen, G. Wang, L. Song, W. Yue, R. Zuo, Y. Zhai, Chemosphere 171(2017) 635-643.
    [21]
    J. Singh, B.-K. Lee, Waste Manage. 38(2015) 271-283.
    [22]
    R.P. Breckenridge, A.B. Crockett, Environ. Monit. Assess. 51(1998) 621-656.
    [23]
    United States Environmental Protection Agency, Method 1311(1992). https://www.epa.gov/hw-sw846/sw-846-test-method-1311-toxicity-characteristic-leaching-procedure.
    [24]
    C.P. Qi, W.J. Bao, L.G. Wang, H.Q. Li, W.F. Wu, Catalysts 7(2017) 110.
    [25]
    W.F. Wu, C.Y. Wang, W.J. Bao, H.Q. Li, Hydrometallurgy 179(2018) 52-59.
    [26]
    A. Szymczycha-Madeja, J. Hazard. Mater. 186(2011) 2157-2161.
    [27]
    Q. Kang, Y. Zhang, S. Bao, Hydrometallurgy 185(2019) 125-132.
    [28]
    P. Meshram, B.D. Pandey, T.R. Mankhand, Waste Manage. 45(2015) 306-313.
    [29]
    J. Singh, A.S. Kalamdhad, Ecol. Eng. 52(2013) 59-69.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (127) PDF downloads(17) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return