Sheng Yin, Yong Chen, Ming Li, Qingsong Hu, Yi Ding, Yifan Shao, Jun Di, Jiexiang Xia, Huaming Li. Construction of NH2-MIL-125(Ti)/Bi2WO6 composites with accelerated charge separation for degradation of organic contaminants under visible light irradiation. Green Energy&Environment, 2020, 5(2): 203-213. doi: 10.1016/j.gee.2020.03.008
Citation: Sheng Yin, Yong Chen, Ming Li, Qingsong Hu, Yi Ding, Yifan Shao, Jun Di, Jiexiang Xia, Huaming Li. Construction of NH2-MIL-125(Ti)/Bi2WO6 composites with accelerated charge separation for degradation of organic contaminants under visible light irradiation. Green Energy&Environment, 2020, 5(2): 203-213. doi: 10.1016/j.gee.2020.03.008

Construction of NH2-MIL-125(Ti)/Bi2WO6 composites with accelerated charge separation for degradation of organic contaminants under visible light irradiation

doi: 10.1016/j.gee.2020.03.008
  • Photocatalysis is considered as an ideal strategy for water pollution treatment. However, it remains challenging to design a highly efficient photocatalytic system through regulating the charge flow via a precise approach. In this work, a novel NH2-MIL-125(Ti)/Bi2WO6 composite was constructed via self-assembly growing Bi2WO6 nanosheets on NH2-MIL-125(Ti) material. The characterization results demonstrated that NH2-MIL-125(Ti) was successfully incorporated into Bi2WO6 and the photoexcited carriers could be efficiently separated and transferred between the two components. NH2-MIL-125(Ti)/Bi2WO6 composites displayed enhanced photocatalytic activity for the removal of rhodamine B (RhB) and tetracycline (TC) under visible light irradiation, and the optimal weight ratio of NH2-MIL-125(Ti) was determined to be 7 wt%. The introduction of NH2-MIL-125(Ti) into Bi2WO6 could raise the absorption of visible light, accelerate the separation and transfer of charge carriers, and boost photocatalytic activity. This research presents a wide range of possibilities for the further development of novel composites in the field of environment purification.

     

  • loading
  • [1]
    J. Di, C. Zhu, M.X. Ji, M.L. Duan, R. Long, C. Yan, K.Z. Gu, J. Xiong, Y.B. She, J.X. Xia, H.M. Li, Z. Liu, Angew. Chem. Int. Ed. 57 (2018) 14847 -14851.
    [2]
    Q.S. Hu, Y. Chen, M. Li, Y. Zhang, B. Wang, Y.P. Zhao, J.X. Xia, S. Yin, H.M. Li, Colloids Surf. A Physicochem. Eng. Aspects 579 (2019) 123625.
    [3]
    Q.S. Hu, M.X. Ji, J. Di, B. Wang, J.X. Xia, Y.P. Zhao, H.M. Li, J. Colloid Interface Sci. 519 (2018) 263-272.
    [4]
    A.E. Nogueira, E. Longo, E.R. Leite, E.R. Camargo, Ceram. Int. 41 (2015) 12073-12080.
    [5]
    B. Wang, J. Di, P.F. Zhang, J.X. Xia, S. Dai, H.M. Li, Appl. Catal. B Environ. 206 (2017) 127-135.
    [6]
    J. Di, J. Xiong, H.M. Li, Z. Liu, Adv. Mater. 30 (2018) 1704548.
    [7]
    C.L. Yu, Z. Wu, R.Y. Liu, D.D. Dionysiou, K. Yang, C.Y. Wang, H. Liu, Appl. Catal. B Environ. 209 (2017) 1-11.
    [8]
    J. Di, J.X. Xia, Y.P. Ge, H.P. Li, H.Y. Ji, H. Xu, Q. Zhang, H.M. Li, M.N. Li, Appl. Catal. B Environ. 168 (2015) 51-61.
    [9]
    R.A. He, S.W. Cao, P. Zhou, J.G. Yu, Chinese J. Catal. 35 (2014) 989-1007.
    [10]
    J.J. Wang, L. Tang, G.M. Zeng, Y.C. Deng, Y.N. Liu, L.L. Wang, Y.Y. Zhou, Z. Guo, J.J. Wang, C. Zhang, Appl. Catal. B Environ. 209 (2017) 285-294.
    [11]
    N. Zhang, R. Ciriminna, M. Pagliaro, Y.J. Xu, Chem. Soc. Rev. 43 (2014) 5276-5287.
    [12]
    S. Adhikari, D.H. Kim, Chem. Eng. J. 354 (2018) 692-705.
    [13]
    J. Di, C. Yan, A.D. Handoko, Z.W. Seh, H.M. Li, Z. Liu, Mater. Today 21 (2018) 749-770.
    [14]
    Y. Yan, Y.F. Wu, Y.T. Yan, W.S. Guan, W.D. Shi, J. Phys. Chem. C 117 (2013) 20017-20028.
    [15]
    H. Huang, K. Liu, K. Chen, Y. Zhang, S. Wang, J. Phys. Chem. C 118 (2014) 14379-14387.
    [16]
    L. Zhou, M.M. Yu, J. Yang, Y.H. Wang, C. Z. Yu, J. Phys. Chem. C 114 (2010) 18812-18818.
    [17]
    C. Zhang, Y.F. Zhu, Chem. Mater. 17 (2005) 3537-3545.
    [18]
    J. Di, C. Chen, C. Zhu, M.X. Ji, J.X. Xia, C. Yan, W. Hao, S.Z. Li, H.M. Li, Z. Liu, Appl. Catal. B Environ. 238 (2018) 119-125.
    [19]
    S.B. Zhu, T.G. Xu, H.B. Fu, J.C. Zhao, Y.F. Zhu, Environ. Sci. Technol. 41 (2007) 6234-6239.
    [20]
    Z.J. Zhang, W.Z. Wang, L. Wang, S.M. Sun, ACS Appl. Mater. Interfaces 4 (2012) 593-597.
    [21]
    X.X. Mu, J.F. Jiang, F.F. Chao, Y.B. Lou, J.X. Chen, Dalton Trans.. 47 (2018) 1895-1902.
    [22]
    H. Wang, X.Z. Yuan, Y. Wu, G.M. Zeng, H.R. Dong, X.H. Chen, L.J. Leng, Z.B. Wu, L.J. Peng, Appl. Catal. B Environ. 186 (2016) 19-29.
    [23]
    J. Ding, Z.Q. Yang, C. He, X.W. Tong, Y. Li, X.J. Niu, H.G. Zhang, J. Colloid Interface Sci. 497 (2017) 126-133
    [24]
    M.F. Zheng, L.B. Huang, H.W. Huang, X.W. Li, W.Q. Wu, H.F. Jiang, Org. Lett. 16 (2014) 5906-5909.
    [25]
    Y. Wu, J. He, S.Q. Wang, L.K. Zou, X.R. Wu, Inorg. Chim. Acta. 458 (2017) 218-223.
    [26]
    S.N. Kim, J. Kim, H.Y. Kim, H.Y. Cho, W.S. Ahn, Catal. Today 204 (2013) 85-93.
    [27]
    Y.H. Fu, D.R. Sun, Y.J. Chen, R.K. Huang, Z.X. Ding, X.Z. Fu, Z.H. Li, Angew. Chem. Int. Ed. 124 (2012) 3420-3423.
    [28]
    M. Dan-Hardi, C. Serre, T. Frot, L. Rozes, G. Maurin, C. Sanchez, G. Ferey, J. Am. Chem. Soc. 131 (2010) 10857-10859.
    [29]
    D.R. Sun, L. Ye, Z.H. Li, Appl. Catal. B Environ. 164 (2015) 428-432.
    [30]
    D.R. Sun, W.J. Liu, Y.H. Fu, Z.X. Fang, F.X. Sun, X.Z. Fu, Y.F. Zhang, Z.H. Li, Chem. Eur. J. 20 (2014) 4780-4788.
    [31]
    C.H. Hendon, D. Tiana, M. Fontecave, C. Sanchez, L. Darras, C. Sassoye, L. Rozes, C.M. Draznieks, A. Walsh, J. Am. Chem. Soc. 135 (2013) 10942-10945.
    [32]
    S.R. Zhu, P.F. Liu, M.K. Wu, W.N. Zhao, G.C. Li, K. Tao, F.Y. Yi, L. Han, Dalton Trans.. 45 (2016) 17521-17529.
    [33]
    Z.Q. Yang, J. Ding, J.N. Feng, C. He, Y. Li, X.W. Tong, X.J. Niu, H.G. Zhang, Appl. Organomet. Chem. 32 (2018) e4285.
    [34]
    J.X. Xia, J. Di, S. Yin, H. Xu, J. Zhang, Y.G. Xu, L. Xu, H.M. Li, M.X. Ji, RSC Adv.. 4 (2013) 82-90.
    [35]
    H.W. Ma, J.F. Shen, M. Shi, X. Lu, Z.Q. Li, Y. Long, N. Li, M.X. Ye, Appl. Catal. B Environ. 121-122 (2012) 198-205.
    [36]
    H.R. Zhou, Z.P. Wen, J. Liu, J. Ke, X.G. Duan, S.B. Wang, Appl. Catal. B Environ. 242 (2019) 76-84.
    [37]
    Z.W. Yang, X.Q. Xu, X.X. Liang, C. Lei, Y.H. Cui, W.H. Wu, Y.X. Yang, Z. Zhang, Z.Q. Lei, Appl. Catal. B Environ. 205 (2017) 42-54.
    [38]
    Y.H. Lv, W.Q. Yao, R.L. Zong, Y.F. Zhu, Sci. Rep. 6 (2016) 19347.
    [39]
    M.Y. Zhou, Y.Q. Li, Q. Gong, Z.B. Xia, Y. Yang, X.H. Liu, J. Wang, Q.W. Gao, ChemElectroChem 6 (2019) 4595-4607.
    [40]
    H. Wang, X.Z. Yuan, Y. Wu, G.M. Zeng, X.H. Chen, L.J. Leng, H. Li, Appl. Catal. B Environ. 174 (2015) 445-454.
    [41]
    J. Di, C. Chen, S.Z. Yang, S.M. Chen, M.L. Duan, J. Xiong, C. Zhu, R. Long, W. Hao, Z. Chi, H.L. Chen, Y.X. Weng, J.X. Xia, L. Song, S.Z. Li, H.M. Li, Z. Liu, Nat. Commun. 10 (2019) 2840.
    [42]
    B. Wang, J. Di, L. Lu, S.C. Yan, G.P. Liu, Y.Z. Ye, H.T. Li, W.S. Zhu, H.M. Li, J.X. Xia, Appl. Catal. B Environ. 254 (2019) 551-559.
    [43]
    J. Di, J.X. Xia, M.F. Chisholm, J. Zhong, C. Chen, X.Z. Cao, F. Dong, Z. Chi, H.L. Chen, Y.X. Weng, J. Xiong, S.Z. Yang, H.M. Li, Z. Liu, S. Dai, Adv. Mater. 31 (2019) 1807576.
    [44]
    F. Rao, G.Q. Zhu, M. Hojamberdiev, W.B. Zhang, S.P. Li, J.Z. Gao, F.C. Zhang, Y.H. Huang, Y. Huang, J. Phys. Chem. C 123 (2019) 16268-16280.
    [45]
    G.Q. Zhu, S.P. Li, J.Z. Gao, F.C. Zhang, C.L. Liu, Q.Z. Wang, M. Hojamberdiev, Appl. Surf. Sci. 493 (2019) 913-925.
    [46]
    Y.G. Xu, J. Liu, M. Xie, L.Q. Jing, H. Xu, X.J. She, H.M. Li, J.M. Xie, Chem. Eng. J. 357 (2019) 487-497.
    [47]
    Y.G. Xu, F.Y. Ge, Z.G. Chen, S.Q. Huang, W. Wei, M. Xie, H. Xu, H.M. Li, Appl. Surf. Sci. 469 (2019) 739-746.
    [48]
    Y.F. Jia, S.P. Li, H.X. Ma, J.Z. Gao, G.Q. Zhu, F.C. Zhang, J.Y. Park, S. Cha, J.S. Bae, C.L. Liu, J. Hazard Mater. 382 (2020) 121121.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (264) PDF downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return