Volume 6 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
Hong Zhang, Ying Luo, Dong Chen, Hui Liu, Penglei Cui, Jun Yang. Ionic liquid-derived core–shell gold@palladium nanoparticles with tiny sizes for highly efficient electrooxidation of ethanol. Green Energy&Environment, 2021, 6(2): 229-235. doi: 10.1016/j.gee.2020.03.007
Citation: Hong Zhang, Ying Luo, Dong Chen, Hui Liu, Penglei Cui, Jun Yang. Ionic liquid-derived core–shell gold@palladium nanoparticles with tiny sizes for highly efficient electrooxidation of ethanol. Green Energy&Environment, 2021, 6(2): 229-235. doi: 10.1016/j.gee.2020.03.007

Ionic liquid-derived core–shell gold@palladium nanoparticles with tiny sizes for highly efficient electrooxidation of ethanol

doi: 10.1016/j.gee.2020.03.007
  • To maximize the size and structural advantages of nanomaterials in electrooxidation of ethanol, we herein report the synthesis of core–shell gold (Au)@Palladium (Pd) nanoparticles smaller than 3 nm in an ionic liquid, which combines the advantages of ionic liquids in preparing fine metal nanoparticles with the benefits of core–shell nanostructures. This synthetic strategy relies on the use of an ionic liquid (1-(2′-aminoethyl)-3-methyl-imidazolum tetrafluoroborate) as a stabilizer to produce Au particles with an average size of ca. 2.41 nm, which are then served as seeds for the formation of tiny core–shell Au@Pd nanoparticles with different Au/Pd molar ratios. The strong electronic coupling between Au core and Pd shell endows the Pd shell with an electronic structure favorable for the ethanol oxidation reaction. In specific, the ionic liquid-derived core–shell Au@Pd nanoparticles at an Au/Pd molar ratio of 1/1 exhibit the highest mass- and area-based activities, approximately 11 times than those of commercial Pd/C catalyst for ethanol electrooxidation.

     

  • loading
  • [1]
    K.V. Kordesch, G.R. Simader, Chem. Rev. 95 (1995) 191-207.
    [2]
    J. Bai, D. Liu, J. Yang, Y. Chen, ChemSusChem 12 (2019) 2117-2132.
    [3]
    H. von Blottnitz, M.A. Curran, J. Clean. Prod. 15 (2007) 607-619.
    [4]
    E.H. Yu, U. Krewer, K. Scott, Energies 3 (2010) 1499-1528.
    [5]
    A. Brouzgou, A. Podias, P. Tsiakaras, J. Appl. Electrochem. 43 (2013) 119-136.
    [6]
    D. Scordia, S.L. Cosentino, T.W. Jeffries, Biomass Bioenergy 59 (2013) 540-548.
    [7]
    A. Shi, Z. Du, X. Ma, Y. Cheng, M. Min, S. Deng, P. Chen, D. Li, R. Ruan, Bioresour. Technol. 128 (2013) 100-106.
    [8]
    S.P.S. Badwal, S. Giddey, A. Kulkarni, J. Goel, S. Basu, Appl. Energy 145 (2015) 80-103.
    [9]
    J. Wang, S. Wasmus, R.F. Savinell, J. Electrochem. Soc. 142 (1995) 4218-4224.
    [10]
    E. Antolini, J. Power Sources 170 (2007) 1-12.
    [11]
    C. Bianchini, P.K. Shen, Chem. Rev. 109 (2009) 4183-4206.
    [12]
    E. Antolini, Energy Environ. Sci. 2 (2009) 915-931.
    [13]
    E. Antolini, ChemSusChem 6 (2013) 966-973.
    [14]
    Z. Zhang, J. Liu, J. Gu, L. Su, L. Cheng, Energy Environ. Sci. 7 (2014) 2535-2558.
    [15]
    M.B. Gawande, A. Goswami, T. Asefa, H. Guo, A.V. Biradar, D.-L. Peng, R. Zboril, R.S. Varma, Chem. Soc. Rev. 44 (2015) 7540-7590.
    [16]
    W. Wang, F. Lv, B. Lei, S. Wan, M. Luo, S. Guo, Adv. Mater. 28 (2016) 10117-10141.
    [17]
    H. Mistry, A.S. Varela, S. Kuhl, P. Strasser, B.R. Cuenya, Nat. Rev. Mater. 1 (2016) 16009.
    [18]
    M.A. Zeb Gul Sial, M.A.U. Din, X. Wang, Chem. Soc. Rev. 47 (2018) 6175-6200.
    [19]
    B.-W. Zhang, H.-L. Yang, Y.-X. Wang, S.-X. Dou, H.-K. Liu, Adv. Energy Mater. 8 (2018) 1703597.
    [20]
    Z. Ma, J. Yu, S. Dai, Adv. Mater. 22 (2010) 261-285.
    [21]
    J. Dupont, J.D. Scholten, Chem. Soc. Rev. 39 (2010) 1780-1804.
    [22]
    K. Richter, A. Birkner, A.-V. Mudring, Angew. Chem. Int. Ed. 49 (2010) 2431-2435.
    [23]
    N. von Prondzinski, J. Cybinska, A.-V. Mudring, Chem. Commun. 46 (2010) 4393-4395.
    [24]
    C. Vollmer, C. Janiak, Coordin. Chem. Rev. 255 (2011) 2039-2057.
    [25]
    P. Cui, H. He, D. Chen, H. Liu, S. Zhang, J. Yang, Ind. Eng. Chem. Res. 53 (2014) 15909-15916.
    [26]
    H. Wang, W. Huang, H. Han, Particuology 11 (2013) 301-308.
    [27]
    Y. Zhang, Y. Cao, D. Chen, P. Cui, J. Yang, Electrochim. Acta 269 (2018) 38-44.
    [28]
    J. Yang, J.Y. Lee, H.-P. Too, G.-M. Chow, L.M. Gan, Chem. Phys. 323 (2006) 304-312.
    [29]
    J. Yang, J.Y. Lee, H.-P. Too, G.-M. Chow, Biophys. Chem. 120 (2006) 87-95.
    [30]
    H. Liu, J. Qu, Y. Chen, J. Li, F. Ye, J.Y. Lee, J. Yang, J. Am. Chem. Soc. 134 (2012) 11602-11610.
    [31]
    F. Ye, H. Liu, W. Hu, J. Zhong, Y. Chen, H. Cao, J. Yang, Dalton Trans.. 41 (2012) 2898-2903.
    [32]
    Y. Feng, H. Liu, J. Yang, J. Mater. Chem. A 2 (2014) 6130-6137.
    [33]
    Y. Yu, Z. Luo, Y. Yu, J.Y. Lee, J. Xie, ACS Nano 6 (2012) 7920-7927.
    [34]
    Q. Yao, T. Chen, X. Yuan, J. Xie, Acc. Chem. Res. 51 (2018) 1338-1348.
    [35]
    Q. Yao, X. Yuan, V. Fung, Y. Yu, D.T. Leong, D. Jiang, J. Xie, Nat. Commun. 8 (2017) 927.
    [36]
    M. Brust, J. Fink, D. Bethell, D.J. Schiffrin, R. Whyman, J. Chem. Soc. Chem. Commun. 7 (1994) 801-802.
    [37]
    D. Chen, J. Li, P. Cui, H. Liu, J. Yang, J. Mater. Chem. A 4 (2016) 3813-3821.
    [38]
    Y.-Y. Feng, Z.-H. Liu, Y. Xu, P. Wang, W.-H. Wang, D.-S. Kong, J. Power Sources 232 (2013) 99-105.
    [39]
    Q. Wang, W. Zheng, H. Chen, B. Zhang, D. Su, X. Cui, J. Power Sources 316 (2016) 29-36.
    [40]
    C.D. Wagner, A.V. Naumkin, A. Kraut-Vass, J.W. Allison, C.J. Powell, J.R. Rumble, NIST Standard Reference Database 20, version 3.4 (web version), http:/srdata.nist.gov/xps, 2003.
    [41]
    J. Yang, J.Y. Lee, H.-P. Too, Anal. Chim. Acta 588 (2007) 34-41.
    [42]
    Q. Yuan, Z. Zhou, J. Zhuang, X. Wang, Chem. Mater. 22 (2010) 2395-2402.
    [43]
    G.-R. Zhang, J. Wu, B.-Q. Xu, J. Phys. Chem. C 116 (2012) 20839-20847.
    [44]
    L. Rao, Y.-X. Jiang, B.-W. Zhang, Y.-R. Cai, S.-G. Sun, Phys. Chem. Chem. Phys. 16 (2014) 13662-13671.
    [45]
    X. Qiu, Y. Dai, Y. Tang, T. Lu, S. Wei, Y. Chen, J. Power Sources 278 (2015) 430-435.
    [46]
    J. Liu, Z. Huang, K. Cai, H. Zhang, Z. Lu, T. Li, Y. Zuo, H. Han, Chem. Eur. J. 21 (2015) 17779-17785
    [47]
    Y. Zhai, Z. Zhu, X. Lu, H.S. Zhou, J. Power Sources 329 (2016) 232-237.
    [48]
    Y. Yang, L. Jin, B. Liu, P. Kerns, J. He, Electrochim. Acta 269 (2018) 441-451.
    [49]
    A. Carlar, H. Kivrak, Int. J. Hydrog. Energy 44 (2019) 11734-11743.
    [50]
    L.S.R. Silva, C.V.S. Almeida, C.T. Meneses, E.A. Batista, S.F. Santos, K.I.B. Eguiluz, G.R. Salazar-Banda, Appl. Catal. B Environ. 251 (2019) 313-325.
    [51]
    D. Chen, R.-H. Zhang, Q. Hu, Y.-F. Guo, S.-N. Chen, X.-W. Zhou, Z.-X. Dai, J. Electroanal. Chem. 834 (2019) 241-248.
    [52]
    K. Liu, W. Wang, P. Guo, J. Ye, Y. Wang, P. Li, Z. Lyu, Y. Geng, M. Liu, S. Xie, Adv. Funct. Mater. 29 (2019) 1806300.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (120) PDF downloads(10) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return