Thanh Tran Duy, Alysson Duarte Rodrigues, Giang Vo-Thanh, Peter Hesemann. Dialkyl imidazolium acetate ionosilica as efficient and recyclable organocatalyst for cyanosilylation reactions of ketones. Green Energy&Environment, 2020, 5(2): 130-137. doi: 10.1016/j.gee.2020.03.005
Citation: Thanh Tran Duy, Alysson Duarte Rodrigues, Giang Vo-Thanh, Peter Hesemann. Dialkyl imidazolium acetate ionosilica as efficient and recyclable organocatalyst for cyanosilylation reactions of ketones. Green Energy&Environment, 2020, 5(2): 130-137. doi: 10.1016/j.gee.2020.03.005

Dialkyl imidazolium acetate ionosilica as efficient and recyclable organocatalyst for cyanosilylation reactions of ketones

doi: 10.1016/j.gee.2020.03.005
  • We report new heterogeneous organocatalyst based on silica hybrid supported N-heterocyclic carbene (NHC-) species. The organocatalyst is formed from an imidazolium iodide based ionosilica material, followed by iodide/acetate anion exchange. The imidazolium acetate generates the organocatalytic carbene via partial deprotonation of the imidazolium ring in situ. As monitored via EDX, solid state NMR and ion chromatography measurements, the iodide/acetate exchange involving the imidazolium ionosilica material took place only in small extent. Despite the fact that the exchanged material contains only a very small amount of acetate, we observed good catalytic activity and recyclability in cyanosilylation reactions of ketones with trimethylsilyl cyanide. The versatility of the catalyst was highlighted via reaction with several substrates, yielding the corresponding cyanohydrins in good yields. In recycling experiments, the material showed decreasing catalytic activity starting from the third reaction cycle, but high catalytic activity can be regenerated via another acetate treatment. Our work is important as it highlights the possibility to combine carbene chemistry and silica, which are antagonistic at a first glance. We show that imidazolium acetate based ionosilicas are therefore heterogeneous ‘proto-carbenes’, and that there is no need to form strongly basic silica supported NHCs to obtain heterogeneous NHC-organocatalysts. This work therefore opens the route towards heterogeneous and re-usable NHC-organocatalysts from supported ionic liquid imidazolium acetates.

     

  • loading
  • [1]
    D. Enders, O. Niemeier, A. Henseler, Chem. Rev. 107 (2007) 5606-5655.
    [2]
    D.M. Flanigan, F. Romanov-Michailidis, N.A. White, T. Rovis, Chem. Rev. 115 (2015) 9307-9387.
    [3]
    H.W. Wanzlick, H. Schonherr, Angew. Chem. Int. Ed. 7 (1968) 141-142.
    [4]
    K. Ofele, J. Organomet. Chem. 12 (1968) P42-P43.
    [5]
    D. Bourissou, O. Guerret, F.P. Gabbai, G. Bertrand, Chem. Rev. 100 (2000) 39-91.
    [6]
    N. Marion, S. Diez-Gonzalez, S.P. Nolan, Angew. Chem. Int. Ed. 46 (2007) 2988-3000.
    [7]
    A.J. Arduengo, R.L. Harlow, M. Kline, J. Am. Chem. Soc. 113 (1991) 361-363.
    [8]
    R. Zhong, A.C. Lindhorst, F.J. Groche, F.E. Kuehn, Chem. Rev. 117 (2017) 1970-2058.
    [9]
    R. Lambert, P. Coupillaud, A.L. Wirotius, J. Vignolle, D. Taton, Macromol. Rapid Commun. 37 (2016) 1143-1149.
    [10]
    S. Garmendia, R. Lambert, A.-L. Wirotius, J. Vignolle, A.P. Dove, R.K. O'Reilly, D. Taton, Eur. Polym. J. 107 (2018) 82-88.
    [11]
    B.W. Xin, J.C. Hao, Chem. Soc. Rev. 43 (2014) 7171-7187.
    [12]
    L. Wang, E.Y.X. Chen, ACS Catal.. 5 (2015) 6907-6917.
    [13]
    T. Droge, F. Glorius, Angew. Chem. Int. Ed. 49 (2010) 6940-6952.
    [14]
    E.M. Higgins, J.A. Sherwood, A.G. Lindsay, J. Armstrong, R.S. Massey, R.W. Alder, A.C. O'Donoghue, Chem. Commun. 47 (2011) 1559-1561.
    [15]
    T.L. Amyes, S.T. Diver, J.P. Richard, F.M. Rivas, K. Toth, J. Am. Chem. Soc. 126 (2004) 4366-4374.
    [16]
    Z. Li, X. Li, J.-P. Cheng, J. Org. Chem. 82 (2017) 9675-9681.
    [17]
    I. Chiarotto, L. Mattiello, F. Pandolfi, D. Rocco, M. Feroci, Front. Chem. 6 (2018) 355.
    [18]
    Z. Kelemen, O. Holloczki, J. Nagy, L. Nyulaszi, Org. Biomol. Chem. 9 (2011) 5362-5364.
    [19]
    B. Ullah, J. Chen, Z. Zhang, H. Xing, Q. Yang, Z. Bao, Q. Ren, Sci. Rep. 7 (2017) 42699.
    [20]
    S. El Hankari, B. Motos-Perez, P. Hesemann, A. Bouhaouss, J.J.E. Moreau, J. Mater. Chem. 21 (2011) 6948-6955.
    [21]
    V. Polshettiwar, P. Hesemann, J.J.E. Moreau, Tetrahedron Lett.. 48 (2007) 5363-5366.
    [22]
    N. Thy Phuong, P. Hesemann, J.J.E. Moreau, Microporous Mesoporous Mater. 142 (2011) 292-300.
    [23]
    B. Motos-Perez, J. Roeser, A. Thomas, P. Hesemann, Appl. Organomet. Chem. 27 (2013) 290-299.
    [24]
    M. North, D.L. Usanov, C. Young, Chem. Rev. 108 (2008) 5146-5226.
    [25]
    M. Kronstein, J. Akbarzadeh, C. Drechsel, H. Peterlik, M.-A. Neouze, Chem. Eur J. 20 (2014) 10763-10774.
    [26]
    R.J.P. Corriu, J.J.E. Moreau, P. Thepot, M.W.C. Man, Chem. Mater. 4 (1992) 1217-1224.
    [27]
    A. Brethon, P. Hesemann, L. Rejaud, J.J.E. Moreau, M.W.C. Man, J. Organomet. Chem. 627 (2001) 239-248.
    [28]
    W.F. Wang, M. Luo, W.W. Yao, M.T. Ma, S.A. Pullarkat, L. Xu, P.H. Leung, ACS Sustain. Chem. Eng. 7 (2019) 1718-1722.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (133) PDF downloads(10) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return