Peiwen Wu, Linjie Lu, Jing He, Linlin Chen, Yanhong Chao, Minqiang He, Fengxia Zhu, Xiaozhong Chu, Huaming Li, Wenshuai Zhu. Hexagonal boron nitride: A metal-free catalyst for deep oxidative desulfurization of fuel oils. Green Energy&Environment, 2020, 5(2): 166-172. doi: 10.1016/j.gee.2020.03.004
Citation: Peiwen Wu, Linjie Lu, Jing He, Linlin Chen, Yanhong Chao, Minqiang He, Fengxia Zhu, Xiaozhong Chu, Huaming Li, Wenshuai Zhu. Hexagonal boron nitride: A metal-free catalyst for deep oxidative desulfurization of fuel oils. Green Energy&Environment, 2020, 5(2): 166-172. doi: 10.1016/j.gee.2020.03.004

Hexagonal boron nitride: A metal-free catalyst for deep oxidative desulfurization of fuel oils

doi: 10.1016/j.gee.2020.03.004
  • Oxidative desulfurization (ODS) has been proved to be an efficient strategy for the production of clean fuel oil. Numerous metal-based materials have been employed as excellent ODS catalysts, but being hindered by their high-cost and potential secondary pollution. In this work, we employed graphene analogous hexagonal boron nitride (h-BN) as a metal-free catalyst for ODS with hydrogen peroxide (H2O2) as the oxidant. The h-BN catalyst was characterized and proved to be a few-layered structure with relatively high specific surface areas. The h-BN catalyst showed a 99.4% of sulfur removal in fuel oil under the optimized reaction conditions. Besides, the h-BN can be recycled for 8 times without significant decrease in the catalytic performance. Detailed mechanism analysis found that it is the boron radicals in h-BN activated H2O2 to generate ·OH species, which can readily oxidize sulfides to corresponding sulfones for separation. This work would provide another choice in choosing metal-free catalysts for ODS.

     

  • loading
  • [1]
    S.H. Ren, Y.C. Hou, K. Zhang, W.Z. Wu, Green Energy Environ.. 3 (2018) 179-190.
    [2]
    S.W. Li, J.R. Li, Q.P. Jin, Z. Yang, R.L. Zhang, R.M. Gao, J.S. Zhao, J. Hazard Mater. 337 (2017) 208-216.
    [3]
    J. Mi, F. Liu, W. Chen, X. Chen, L. Shen, Y. Cao, C. Au, K. Huang, A. Zheng, L. Jiang, ACS Appl. Mater. Interfaces 11 (2019) 29950-29959.
    [4]
    J. Mi, X. Chen, Q. Zhang, Y. Zheng, Y. Xiao, F. Liu, C.-T. Au, L. Jiang, Chem. Commun. 55 (2019) 9375-9378.
    [5]
    K. Chen, X.M. Zhang, X.F. Yang, M.G. Jiao, Z. Zhou, M.H. Zhang, D.H. Wang, X.H. Bu, Appl. Catal. B Environ. 238 (2018) 263-273.
    [6]
    L.W. Hao, L.L. Sun, T. Su, D.M. Hao, W.P. Liao, C.L. Deng, W.Z. Ren, Y.M. Zhang, H.Y. Lu, Chem. Eng. J. 358 (2019) 419-426.
    [7]
    B.N. Bhadra, J.Y. Song, N.A. Khan, S.H. Jhung, ACS Appl. Mater. Interfaces 9 (2017) 31192-31202.
    [8]
    K. Chen, N. Liu, M.H. Zhang, D.H. Wang, Appl. Catal. B Environ. 212 (2017) 32-40.
    [9]
    H.R. Zhang, Q. Zhang, L. Zhang, T.T. Pei, L. Dong, P.Y. Zhou, C.Q. Li, L.X. Xia, Chem. Eng. J. 334 (2018) 285-295.
    [10]
    J. Xiong, L. Yang, Y.H. Chao, J.Y. Pang, M. Zhang, W.S. Zhu, H.M. Li, ACS Sustain. Chem. Eng. 4 (2016) 4457-4464.
    [11]
    J. Xiao, X. Wang, M. Fujii, Q. Yang, C. Song, AIChE J.. 59 (2013) 1441-1445.
    [12]
    J. Xiao, L. Wu, Y. Wu, B. Liu, L. Dai, Z. Li, Q. Xia, H. Xi, Appl. Energy 113 (2014) 78-85.
    [13]
    W. Zhang, H. Zhang, J. Xiao, Z. Zhao, M. Yu, Z. Li, Green Chem.. 16 (2014) 211-220.
    [14]
    P.W. Wu, Y.C. Wu, L.L. Chen, J. He, M.Q. Hua, F.X. Zhu, X.Z. Chu, J. Xiong, M.Q. He, W.S. Zhu, H.M. Li, Chem. Eng. J. 380 (2020) 122526.
    [15]
    H.W. Yang, B. Jiang, Y.L. Sun, L.H. Zhang, Z.H. Huang, Z.N. Sun, N. Yang, J. Hazard Mater. 333 (2017) 63-72.
    [16]
    A. Gomez-Paricio, A. Santiago-Portillo, S. Navalon, P. Concepcion, M. Alvaro, H. Garcia, Green Chem.. 18 (2016) 508-515.
    [17]
    H.P. Li, Y.J. Li, L.H. Sun, S.H. Xun, W. Jiang, M. Zhang, W.S. Zhu, H.M. Li, J. Mol. Graph. Model. 84 (2018) 166-173.
    [18]
    W.S. Zhu, B.L. Dai, P.W. Wu, Y.H. Chao, J. Xiong, S.H. Xun, H.P. Li, H.M. Li, ACS Sustain. Chem. Eng. 3 (2015) 186-194.
    [19]
    X.-S. Wang, L. Li, J. Liang, Y.-B. Huang, R. Cao, ChemCatChem 9 (2017) 971-979.
    [20]
    P.W. Wu, W.S. Zhu, A.M. Wei, B.L. Dai, Y.H. Chao, C.F. Li, H.M. Li, S. Dai, Chem. Eur J. 21 (2015) 15421-15427.
    [21]
    L.-P. Hou, R.-X. Zhao, X.-P. Li, X.-H. Gao, Appl. Surf. Sci. 434 (2018) 1200-1209.
    [22]
    W.a.W. Abu Bakar, R. Ali, A.a.A. Kadir, W.N.a.W. Mokhtar, Fuel Process. Technol. 101 (2012) 78-84.
    [23]
    F. Banisharif, M.R. Dehghani, J.M. Campos-Martin, Energy Fuel.. 31 (2017) 5419-5427.
    [24]
    X.-L. Hao, Y.-Y. Ma, H.-Y. Zang, Y.-H. Wang, Y.-G. Li, E.-B. Wang, Chem. Eur J. 21 (2015) 3778-3784.
    [25]
    M. Bagheri, M.Y. Masoomi, A. Morsali, J. Hazard Mater. 331 (2017) 142-149.
    [26]
    L. Shen, G. Lei, Y. Fang, Y. Cao, X. Wang, L. Jiang, Chem. Commun. 54 (2018) 2475-2478.
    [27]
    Q. Gu, G. Wen, Y. Ding, K.-H. Wu, C. Chen, D. Su, Green Chem.. 19 (2017) 1175-1181.
    [28]
    L. Lu, J. He, P. Wu, Y. Wu, Y. Chao, H. Li, D. Tao, L. Fan, H. Li, W. Zhu, Green Chem.. 20 (2018).
    [29]
    W.S Zhu, C. Wang, H.P. Li, P.W. Wu, S.H. Xun, W. Jiang, Z.G. Chen, Z. Zhao, H.M. Li, Green Chem.. 17 (2015) 2464-2472.
    [30]
    A.D. Bokare, W. Choi, J. Hazard Mater. 304 (2016) 313-319.
    [31]
    W. Qi, D. Su, ACS Catal.. 4 (2014) 3212-3218.
    [32]
    Q. Gu, Y. Ding, Z. Liu, Y. Lin, R. Schloegl, S. Heumann, D. Su, J. Energy Chem. 32 (2019) 131-137.
    [33]
    L. Liu, B. Lukose, P. Jaque, B. Ensing, Green Energy Environ.. 4 (2019) 20-28.
    [34]
    Y.Q. Wang, M.Y. Zhu, Y.C. Li, M.J. Zhang, X.Y. Xue, Y.L. Shi, B. Dai, X.H. Guo, F. Yu, Green Energy Environ.. 3 (2018) 172-178.
    [35]
    D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C.C. Tang, C.Y. Zhi, ACS Nano 4 (2010) 2979-2993.
    [36]
    L. Song, L.J. Ci, H. Lu, P.B. Sorokin, C.H. Jin, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I. Yakobson, P.M. Ajayan, Nano Lett.. 10 (2010) 3209-3215.
    [37]
    Y. Lin, J.W. Connell, Nanoscale 4 (2012) 6908-6939.
    [38]
    P.W. Wu, W.S. Zhu, Y.H. Chao, J.S. Zhang, P.F. Zhang, H.Y. Zhu, C.F. Li, Z.G. Chen, H.M. Li, S. Dai, Chem. Commun. 52 (2016) 144-147.
    [39]
    W.S. Zhu, X. Gao, Q. Li, H.P. Li, Y.H. Chao, M.J. Li, S.M. Mahurin, H.M. Li, H.Y. Zhu, S. Dai, Angew. Chem. Int. Ed. 55 (2016) 10766-10770.
    [40]
    W.S. Zhu, Z.L. Wu, G.S. Foo, X. Gao, M.X. Zhou, B. Liu, G.M. Veith, P.W. Wu, K.L. Browning, H.N. Lee, H.M. Li, S. Dai, H.Y. Zhu, Nat. Commun. 8 (2017) 15291.
    [41]
    Z. Liu, J. Liu, S. Mateti, C. Zhang, Y. Zhang, L. Chen, J. Wang, H. Wang, E.H. Doeven, P.S. Francis, C.J. Barrow, A. Du, Y. Chen, W. Yang, ACS Nano 13 (2019) 1394-1402.
    [42]
    Q.Q. Song, Y. Fang, Z.Y. Liu, L.L. Li, Y.R. Wang, J.L. Liang, Y. Huang, J. Lin, L. Hu, J. Zhang, C.C. Tang, Chem. Eng. J. 325 (2017) 71-79.
    [43]
    C. Zhang, Y. He, F. Li, H. Di, L. Zhang, Y. Zhan, J. Alloys Compd. 685 (2016) 743-751.
    [44]
    P. Gross, H.A. Hoppe, Chem. Mater. 31 (2019) 8052-8061.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (127) PDF downloads(32) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return