Volume 6 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
Yanyan Liu, Kang Sun, Jianchun Jiang, Wenshu Zhou, Yuan Shang, Chenxia Du, Baojun Li. Metallurgical pyrolysis toward Co@Nitrogen-doped carbon composite for lithium storage. Green Energy&Environment, 2021, 6(1): 91-101. doi: 10.1016/j.gee.2020.03.003
Citation: Yanyan Liu, Kang Sun, Jianchun Jiang, Wenshu Zhou, Yuan Shang, Chenxia Du, Baojun Li. Metallurgical pyrolysis toward Co@Nitrogen-doped carbon composite for lithium storage. Green Energy&Environment, 2021, 6(1): 91-101. doi: 10.1016/j.gee.2020.03.003

Metallurgical pyrolysis toward Co@Nitrogen-doped carbon composite for lithium storage

doi: 10.1016/j.gee.2020.03.003
  • Elemental state matter-heteroatom-doped carbon composites are of great importance for the development of anode in lithium ion batteries (LIBs). In this article, metal–organic frameworks (MOFs) are adopted as precursor to prepare Co composites via metallurgical pyrolysis under controllable conditions. The obtained nitrogen-doped porous carbon-Co nanocomposite possesses core–shell structure (Co@C–N). Co@C–N exhibits the best Li storage performances as anode active matter. After the 200th cycles at current density of 0.2 A g−1, a reversible capacity of 870 mAh g−1 is retained. A reversible capacity of 275 mAh g−1 still maintains with 5 A g−1. Co@C–N presents a high reversible capacity with excellent cycle stability. Considering the corresponding experimental and theoretical results, the Co0-based N-doped porous carbon composite is proposed to work as LIBs anode matter. These results provide a new design idea for electrode matters of metallic ion battery, and demonstrate that MOFs pyrolysis is an effective method for the construction of elemental state anode materials.

     

  • loading
  • [1]
    F. C. Zheng, Y. Yang and Q. W. Chen, Nat. Commun., 2014, 5, 5261-5270.
    [2]
    D. W. Su, M. Cortie and G. X. Wang, Adv. Energy Mater., 2017, 7, 1602014.
    [3]
    J. Yu, Y. L. Wang, L. Kong, S. M. Chen and S. J. Zhang, ACS Nano, 2019, 13, 9148−9160.
    [4]
    Y. M. Chen, X. Y. Li, K. Park, L. M. Zhou, H. T. Huang, Y. W. Mai and J. B. Goodenough, Angew. Chem. Int. Ed., 2016, 55, 15831-15834.
    [5]
    X. L. Wang, J. M. Zhang, X. Kong, X. Huang and B. Shi, Carbon, 2016, 104, 1−9.
    [6]
    Y. Yang, S. T. Wang, C. H. Jiang, Q. C. Lu, Z. L. Tang and X. Wang, Chem. Mater., 2016, 28, 2417−2423.
    [7]
    M. Huang, K. Mi, J. H. Zhang, H. L. Liu, T. T. Yu, A. H. Yuan, Q. H. Kong and S. L. Xiong, J. Mater. Chem. A, 2017, 5, 266-274.
    [8]
    H. L. Cao, X. F. Zhou, W. Deng and Z. P. Liu, J. Mater. Chem. A, 2016, 4, 6021-6028.
    [9]
    X. W. Li, Z. B. Yang, Y. J. Fu, L. Qiao, D. Li, H. W. Yue and D. Y. He, ACS Nano, 2015, 9, 1858-1867.
    [10]
    M. T. McDowell, S. W. Lee, W. D. Nix and Y. Cui, Adv. Mater., 2013, 25, 4966-4985.
    [11]
    X. Li, J. Y. Zhang, R. Wang, H. Y. Huang, C. Xie, Z. H. Li, J. Li and C. M. Niu, Nano Lett., 2015, 15, 5268-5272.
    [12]
    Y. S. Wang, Z. M. Ma, Y. J. Chen, M. C. Zou, M. Yousaf, Y. B. Yang, L. S. Yang, A. Y. Cao and R. P. S. Han, Adv. Mater., 2016, 28, 10175-10181.
    [13]
    Y. Sun, F. Z. Huang, S. K. Li, Y. H. Shen and A. J. Xie, Nano Res., 2017, 10, 3457-3467.
    [14]
    Y. Xiao, P. P. Sun and M. H. Cao, ACS Nano, 2014, 8, 7846-7857.
    [15]
    D. H. Youn, S. K. Stauffer, P. H. Xiao, H. M. Park, Y. J. Nam, A. Dolocan, G. Henkelman, A. Heller and C. B. Mullins, ACS Nano, 2016, 10, 10778−10788.
    [16]
    D. L. Fang, Y. L. Wang, C. Qian, X. Z. Liu, X. Wang, S. M. Chen and S. J. Zhang, Adv. Funct. Mater., 2019, 29, 1900875.
    [17]
    J. L. Long, K. Shen, L. Chen and Y. W. Li, J. Mater. Chem. A, 2016, 4, 10254-10262.
    [18]
    X. Wang, S. Zhao, Y. Zhang, Z. Wang, J. Feng, S. Song and H. Zhang, Chem. Sci., 2016, 7, 1109-1114.
    [19]
    W. Xia, R. Q. Zou, L. An, D. G. Xia and S. J. Guo, Energy Environ. Sci., 2015, 8, 568-576.
    [20]
    J. K. Sun and Q. Xu, Energy Environ. Sci., 2014, 7, 2071-2100.
    [21]
    Y. M. Chen, L. Yu and X. W. Lou, Angew. Chem. Int. Ed., 2016, 55, 5990-5993.
    [22]
    J. Wei, Y. X. Hu, Y. Liang, B. Kong, J. Zhang, J. C. Song, Q. L. Bao, G. P. Simon, S. P. Jiang and H. T. Wang, Adv. Funct. Mater., 2015, 25, 5768-5777.
    [23]
    Z. H. Yang, H. L. Lv and R. B. Wu, Nano Res., 2016, 9, 3671-3682.
    [24]
    Y. H. Song, Y. Q. Chen, J. F. Wu, Y. Y. Fu, R. H. Zhou, S. H. Chen and L. Wang, J. Alloy. Compd., 2017, 694, 1246-1253.
    [25]
    F. L. Meng, Z. G. Fang, Z. X. Li, W. W. Xu, M. J. Wang, Y. P. Liu, J. Zhang, W. R. Wang, D. Y. Zhao and X. H. Guo, J. Mater. Chem. A, 2013, 1, 7235-7241.
    [26]
    W. Xia, A. Mahmood, R. Q. Zou and Q. Xu, Energy Environ. Sci., 2015, 8, 1837-1866.
    [27]
    G. Sargazi, D. Afzali and A. Ghafainazari, J. Inorg. Organomet. Polym., 2014, 24, 786-790.
    [28]
    K. Shen, L. Chen, J. L. Long, W. Zhong and Y. W. Li, ACS Catal., 2015, 5, 5264−5271.
    [29]
    F. L. Yang, P. P. Zhao, X. Hua, W. Luo, G. Z. Cheng, W. Xing and S. L. Chen, J. Mater. Chem. A, 2016, 4, 16057-16063.
    [30]
    X. Han, W. M. Chen, X. G. Han, Y. Z. Tan and D. Sun, J. Mater. Chem. A, 2016, 4, 13040-13045.
    [31]
    P. Sarawade, H. Tan and V. Polshettiwar, ACS Sustain. Chem. Eng., 2012, 1, 66-74.
    [32]
    Y. F. Zhao, J. Q. Zhang, K. F. Li, Z. M. Ao, C. Y. Wang, H. Liu, K. N. Sun and G. X. Wang, J. Mater. Chem. A, 2016, 4, 12818-12824.
    [33]
    Y. Y. Lü, Y. T. Wang, H. L. Li, Y. Lin, Z. Y. Jiang, Z. X. Xie, Q. Kuang and L. S. Zheng, ACS Appl. Mater. Interfaces, 2015, 7, 13604−13611.
    [34]
    G. L. Sun, L. Y. Ma, J. B. Ran, X. Y. Shen and H. Tong, J. Mater. Chem. A, 2016, 4, 9542-9554.
    [35]
    X. L. Sun, G. P. Hao, X. Y. Lu, L. X. Xi, B. Liu, W. P. Si, C. S. Ma, Q. M. Liu, Q. Zhang and S. Kaskel. J. Mater. Chem. A, 2016, 4, 10166-10173.
    [36]
    Q. Guan, J. Cheng, B. Wang, W. Ni, G. Gu, X. Li, L. Huang, G. Yang and F. Nie, ACS Appl. Mater. Interfaces, 2014, 6, 7626-7632.
    [37]
    M. Yang, Y. Zhong, X. Zhou, J. Ren, L. Su, J. Wei and Z. Zhou, J. Mater. Chem. A, 2014, 2, 12519-12525.
    [38]
    G. Li, X. L. Wang, J. Fu, J. D. Li, M. G. Park, Y. N. Zhang, G. Lui and Z. W. Chen, Angew. Chem. Int. Ed., 2016, 55, 4977-4982.
    [39]
    R. R. Salunkhe, J. Tang, Y. Kamachi, T. Nakato, J. H. Kim and Y. Yamauchi, ACS Nano, 2015, 9, 6288-6296.
    [40]
    S. Abouali, M. Akbari Garakani, B. Zhang, Z. L. Xu, E. Kamali Heidari, J. Q. Huang, J. Huang and J.-K. Kim, ACS Appl. Mater. Interfaces, 2015, 7, 13503-13511.
    [41]
    X. Zhang, S. W. Liu, Y. P. Zang, R. R. Liu, G. Q. Liu, G. Z. Wang, Y. X. Zhang, H. M. Zhang and H. J. Zhao, Nano Energy, 2016, 30, 93-102.
    [42]
    Y. Y. Liu, G. S. Han, X. Y. Zhang, C. C. Xing, C. X. Du, H. Q. Cao, and B. J. Li, Nano Res., 2017, 10, 3035-3048.
    [43]
    Y. Wang, C. Y. Wang, Y. J. Wang, H. K. Liu and Z. G. Huang, J. Mater. Chem. A, 2016, 4, 5428-5435.
    [44]
    H. B. Li, F. Shen, W. Luo, J. Q. Dai, X. G. Han, Y. N. Chen, Y. G. Yao, H. L. Zhu, K. Fu, E. Hitz and L. B. Hu, ACS Appl. Mater. Interfaces, 2016, 8, 2204-2210.
    [45]
    C. S. Yan, G. Chen, X. Zhou, J. X. Sun and C. D. Lv, Adv. Funct. Mater., 2016, 26, 1428-1436.
    [46]
    V. Etacheri, C. N. Hong, J. L. Tang and V. G. Pol, ACS Appl. Mater. Interfaces, 2018, 10, 4652−4661.
    [47]
    Y. Wang, H. J. Zhang, L. Lu, L. P. Stubbs, C. C. Wong and J. Y. Lin, ACS Nano, 2010, 4, 4753-4761.
    [48]
    H. G. Wang, D. L. Ma, X. L. Huang, Y. Huang, X. B. Zhang, Sci. Rep., 2012, 2, 701.
    [49]
    J. Zhang, Z. X. Yang, J. C. Qiu and H. W. Lee, J. Mater. Chem. A, 2016, 4, 5802-5809.
    [50]
    L. Chen, Z. Y. Wang, C. N. He, N. Q. Zhao, C. S. Shi, E. Z. Liu and J. J. Li, ACS Appl. Mater. Interfaces, 2013, 5, 9537-9545.
    [51]
    Z. Zhang, Y. Huang, X. D. Liu, C. Chen, Z. P. Xu and P. B. Liu, Carbon, 2020, 157, 244−254.
    [52]
    D. K. Denis, Z. L. Wang, X. Sun, F. U. Zaman, J. Y. Zhang, L. R. Hou, J. Li and C. Z. Yuan, ACS Appl. Mater. Interfaces, 2019, 11, 32052−32061.
    [53]
    X. L. Wang, J. M. Zhang, X. Kong, X. Huang and B. Shi, Carbon, 2016, 104, 1-9.
    [54]
    J. R. He, Y. F. Chen, W. Q. Lv, K. C. Wen, C. Xu, W. L. Zhang, Y. R. Li, W. Qin and W. D. He, ACS Nano, 2016, 10, 10981−10987.
    [55]
    G. C. Li and W. Zhao, J. Alloy. Compd., 2017, 716, 156−161.
    [56]
    Y. C. Wang, J. Lv, L. Zhu and Y. M. Ma, Comp. Phys. Commun., 2012, 183, 2063−2070.
    [57]
    Kresse, G. and J. Furthmuller, Phys. Rev. B, 1996, 54, 11169−11186.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (388) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return