Lei Liu, Lei Wang, Dahuan Liu, Qingyuan Yang, Chongli Zhong. High-throughput computational screening of Cu-MOFs with open metal sites for efficient C2H2/C2H4 separation. Green Energy&Environment, 2020, 5(3): 333-340. doi: 10.1016/j.gee.2020.03.002
Citation: Lei Liu, Lei Wang, Dahuan Liu, Qingyuan Yang, Chongli Zhong. High-throughput computational screening of Cu-MOFs with open metal sites for efficient C2H2/C2H4 separation. Green Energy&Environment, 2020, 5(3): 333-340. doi: 10.1016/j.gee.2020.03.002

High-throughput computational screening of Cu-MOFs with open metal sites for efficient C2H2/C2H4 separation

doi: 10.1016/j.gee.2020.03.002
  • Cost effective separation of acetylene (C2H2) and ethylene (C2H4) is of key importance to obtain essential chemical raw materials for polymer industry. Due to the low compression limit of C2H2, there is an urgent demand to develop suitable materials for efficiently separating the two gases under ambient conditions. In this paper, we provided a high-throughput screening strategy to study porous metal-organic frameworks (MOFs) containing open metal sites (OMS) for C2H2/C2H4 separation, followed by a rational design of novel MOFs in-silico. A set of accurate force fields was established from ab initio calculations to describe the critical role of OMS towards guest molecules. From a large-scale computational screening of 916 experimental Cu-paddlewheel-based MOFs, three materials were identified with excellent separation performance. The structure-performance relationships revealed that the optimal materials should have the largest cavity diameter around 5–10 Å and pore volume in-between 0.3-1.0 cm3 g−1. Based on the systematic screening study result, three novel MOFs were further designed with the incorporation of fluorine functional group. The results showed that Cu-OMS and the –F group on the aromatic rings close to Cu sites could generate a synergistic effect on the preferential adsorption of C2H2 over C2H4, leading to a remarkable improvement of C2H2 separation performance of the materials. The findings could provide insight for future experimental design and synthesis of high-performance nanostructured materials for C2H2/C2H4 separation.

     

  • loading
  • [1]
    R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, R.V. Belosludov, T.C. Kobayashi, H. Sakamoto, T. Chiba, M. Takata, Y. Kawazoe, Y. Mita, Nature 436 (2005) 238-241.
    [2]
    X. Zhao, Y. Wang, D.-S. Li, X. Bu, P. Feng, Adv. Mater. 30 (2018) 1705189.
    [3]
    M. Ruta, G. Laurenczy, P.J. Dyson, L. Kiwi-Minsker, J. Phys. Chem. C 112 (2008) 17814-17819.
    [4]
    M. Tong, Y. Lan, Q. Yang, C. Zhong, Green Energy Environ.. 3 (2018) 107-119.
    [5]
    D. Lupu, I. Coldea, I. Misan, M. Lazar, G. Blanita, Int. J. Hydrogen Energy 44 (2019) 12715-12723.
    [6]
    C. Corgnale, B. Hardy, R. Chahine, R. Zacharia, D. Cossement, Appl. Energy 250 (2019) 333-343.
    [7]
    M. Zhang, C. Chen, Z. Shi, K. Huang, W. Fu, W. Zhou, Inorg. Chem. 58 (2019) 13782-13787.
    [8]
    D. Zhao, C. Yu, J. Jiang, X. Duan, L. Zhang, K. Jiang, G. Qian, J. Solid State Chem. 277 (2019) 139-142.
    [9]
    B. Wang, L.H. Xie, X. Wang, X.M. Liu, J. Li, J.R. Li, Green Energy Environ.. 3 (2018) 191-228.
    [10]
    X.-Q. Wu, Y. Xie, J.H. Liu, T. He, Y.Z. Zhang, J. Yu, X.J. Kong, J.R. Li, J. Mater. Chem. 7 (2019) 25254-25257.
    [11]
    M.M. Xu, X.J. Kong, T. He, X.Q. Wu, L.H. Xie, J.-R. Li, Dalton Trans.. 48 (2019) 9225-9233.
    [12]
    J. Liu, Y. Wei, P. Li, Y. Zhao, R. Zou, J. Phys. Chem. C 121 (2017) 13249-13255.
    [13]
    Y. Ye, Z. Ma, R.B. Lin, R. Krishna, W. Zhou, Q. Lin, Z. Zhang, S. Xiang, B. Chen, J. Am. Chem. Soc. 141 (2019) 4130-4136.
    [14]
    X.L. Lv, K. Wang, B. Wang, J. Su, X. Zou, Y. Xie, J.R. Li, H.C. Zhou, J. Am. Chem. Soc. 139 (2017) 211-217.
    [15]
    J. Lan, Y. Qu, P. Xu, J. Sun, Green Energy Environ.. (2020) DOI: 10.1016/j.gee.2019.12.005.
    [16]
    X. Jia, Z. Yang, Y. Wang, Y. Chen, H. Yuan, H. Chen, X. Xu, X. Gao, Z. Liang, Y. Sun, J.R. Li, H. Zheng, R. Cao, ChemMedChem 13 (2018) 400-405.
    [17]
    W. Chen, C. Wu, Dalton Trans.. 47 (2018) 2114-2133.
    [18]
    X.J. Hong, Q. Wei, Y.P. Cai, B.B. Wu, H.X. Feng, Y. Yu, R.-F. Dong, ACS Appl. Mater. Interfaces 9 (2017) 29374-29379.
    [19]
    S.C. Xiang, Z. Zhang, C.G. Zhao, K. Hong, X. Zhao, D.R. Ding, M.H. Xie, C.D. Wu, M.C. Das, R. Gill, K.M. Thomas, B. Chen, Nat. Commun. 2 (2011) 204.
    [20]
    S. Yang, A.J. Ramirez-Cuesta, R. Newby, V. Garcia-Sakai, P. Manuel, S.K. Callear, S.I. Campbell, C.C. Tang, M. Schroder, Nat. Chem. 7 (2014) 121-129.
    [21]
    E.D. Bloch, W.L. Queen, R. Krishna, J.M. Zadrozny, C.M. Brown, J.R. Long, Science 335 (2012) 1606-1610.
    [22]
    G.X. Jin, J. Wang, J.Y. Liu, J.P. Ma, Y.B. Dong, Inorg. Chem. 57 (2018) 6218-6221.
    [23]
    B. Li, X. Cui, D. O'nolan, H.M. Wen, M. Jiang, R. Krishna, H. Wu, R.B. Lin, Y.S. Chen, D. Yuan, H. Xing, W. Zhou, Q. Ren, G. Qian, M.J. Zaworotko, B. Chen, Adv. Mater. 29 (2017) 1704210.
    [24]
    M.C. Das, Q. Guo, Y. He, J. Kim, C.G. Zhao, K. Hong, S. Xiang, Z. Zhang, K.M. Thomas, R. Krishna, B. Chen, J. Am. Chem. Soc. 134 (2012) 8703-8710.
    [25]
    Z. Zhang, S. Xiang, B. Chen, CrystEngComm 13 (2011) 5983-5992
    [26]
    H.-M. Wen, B. Li, H. Wang, C. Wu, K. Alfooty, R. Krishna, B. Chen, Chem. Commun. 51 (2015) 5610-5613.
    [27]
    X.L. Lv, S. Yuan, L.H. Xie, H.F. Darke, Y. Chen, T. He, C. Dong, B. Wang, Y.Z. Zhang, J.R. Li, H.C. Zhou, J. Am. Chem. Soc. 141 (2019) 10283-10293.
    [28]
    Y. Li, R.T. Yang, AIChE J.. 54 (2008) 269-279.
    [29]
    J.B. Decoste, G.W. Peterson, B.J. Schindler, K.L. Killops, M.A. Browe, J.J. Mahle, J. Mater. Chem. 1 (2013) 11922-11932.
    [30]
    C.M. Simon, J. Kim, D.A. Gomez-Gualdron, J.S. Camp, Y.G. Chung, R.L. Martin, R. Mercado, M.W. Deem, D. Gunter, M. Haranczyk, D.S. Sholl, R.Q. Snurr, B. Smit, Energy Environ. Sci. 8 (2015) 1190-1199.
    [31]
    Y. Lan, M. Tong, Q. Yang, C. Zhong, CrystEngComm 19 (2017) 4920-4926.
    [32]
    Y. Lan, T. Yan, M. Tong, C. Zhong, J. Mater. Chem. 7 (2019) 12556-12564.
    [33]
    Y. Lan, X. Han, M. Tong, H. Huang, Q. Yang, D. Liu, X. Zhao, C. Zhong, Nat. Commun. 9 (2018) 5274.
    [34]
    Z. Qiao, Q. Xu, J. Jiang, J. Mater. Chem. 6 (2018) 18898-18905.
    [35]
    C. Zhang, Y. Lan, X. Guo, Q. Yang, C. Zhong, AIChE J.. 64 (2018) 1389-1398.
    [36]
    Y.G. Chung, D.A. Gomez-Gualdron, P. Li, K.T. Leperi, P. Deria, H. Zhang, N.A. Vermeulen, J.F. Stoddart, F. You, J.T. Hupp, O.K. Farha, R.Q. Snurr, Sci. Adv. 2 (2016) e1600909.
    [37]
    R. Krishna, RSC Adv. 7 (2017) 35724-35737.
    [38]
    T.F. Willems, C.H. Rycroft, M. Kazi, J.C. Meza, M. Haranczyk, Microporous Mesoporous Mater.. 149 (2012) 134-141.
    [39]
    A.L. Myers, P.A. Monson, Langmuir 18 (2002) 10261-10273.
    [40]
    C. Fan, D.D. Do, D. Nicholson, Colloids Surf., A 437 (2013) 42-55.
    [41]
    A.K. Rappe, C.J. Casewit, K.S. Colwell, W. A. Goddard III, W.M. Skiff, J. Am. Chem. Soc. 114 (1992) 10024-10035.
    [42]
    B.A. Wells, C. De Bruin-Dickason, A.L. Chaffee, J. Phys. Chem. C 119 (2014) 456-466.
    [43]
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2010.
    [44]
    T.J.H. Vlugt, E. Garcia-Perez, D. Dubbeldam, S. Ban, S. Calero, J. Chem. Theor. Comput. 4 (2008) 1107-1118.
    [45]
    Q. Yang, D. Liu, C. Zhong, J.-R. Li, Chem. Rev. 113 (2013) 8261-8323.
    [46]
    S.L. Mayo, B.D. Olafson, W.A. Goddard, J. Phys. Chem. 94 (1990) 8897-8909.
    [47]
    A.R. Kulkarni, D.S. Sholl, J. Phys. Chem. C 120 (2016) 23044-23054.
    [48]
    Y. He, R. Krishna, B. Chen, Energy Environ. Sci. 5 (2012) 9107-9120.
    [49]
    D. Sun, S. Ma, J.M. Simmons, J.R. Li, D. Yuan, H.C. Zhou, Chem. Commun. 46 (2010) 1329-1331.
    [50]
    X. Lin, J. Jia, X. Zhao, K.M. Thomas, A.J. Blake, G.S. Walker, N.R. Champness, P. Hubberstey, M. Schroder, Angew. Chem. Int. Ed. 45 (2006) 7358-7364.
    [51]
    P. Diaz-Gallifa, O. Fabelo, J. Pasan, L. Canadillas-Delgado, M.A. Ramirez, A.G. Gallardo, C. Ruiz-Perez, CrystEngComm 17 (2015) 5081-5093.
    [52]
    C. Altintas, I. Erucar, S. Keskin, ACS Appl. Mater. Interfaces 10 (2018) 3668-3679.
    [53]
    Z. Wang, V.C. Kravtsov, R.B. Walsh, M.J. Zaworotko, Cryst. Growth Des. 7 (2007) 1154-1162.
    [54]
    G.L. Wen, Y.-Y. Wang, W.H. Zhang, C. Ren, R.T. Liu, Q.Z. Shi, CrystEngComm 12 (2010) 1238-1251.
    [55]
    N. Ko, J. Hong, L. You, H.J. Park, J.K. Yang, J. Kim, Bull. Kor. Chem. Soc. 36 (2015) 327-332.
    [56]
    G. Chang, B. Li, H. Wang, Z. Bao, T. Yildirim, Z. Yao, S. Xiang, W. Zhou, B. Chen, Chem. Commun. 51 (2015) 14789-14792.
    [57]
    F. Chen, D. Bai, X. Wang, Y. He, Inorg. Chem. Front. 4 (2017) 960-967.
    [58]
    Z. Zhang, X. Cui, L. Yang, J. Cui, Z. Bao, Q. Yang, H. Xing, Ind. Eng. Chem. Res. 57 (2018) 7266-7274.
    [59]
    X. Cui, K. Chen, H. Xing, Q. Yang, R. Krishna, Z. Bao, H. Wu, W. Zhou, X. Dong, Y. Han, B. Li, Q. Ren, M.J. Zaworotko, B. Chen, Science 353 (2016) 141-144.
    [60]
    T.-L. Hu, H. Wang, B. Li, R. Krishna, H. Wu, W. Zhou, Y. Zhao, Y. Han, X. Wang, W. Zhu, Z. Yao, S. Xiang, B. Chen, Nat. Commun. 6 (2015) 7328.
    [61]
    L. Yang, A. Jin, L. Ge, X. Cui, H. Xing, Chem. Commun. 55 (2019) 5001-5004.
    [62]
    S.J. Grabowski, J. Phys. Chem. 105 (2001) 10739-10746.
    [63]
    N. L. Allinger, Adv. Phys. Org. Chem. 13 (1976) 1-82.
    [64]
    I. Mitxelena, M. Piris, J. Chem. Phys. 144 (2016) 204108.
    [65]
    M. Chang, Y. Zhao, Q. Yang, D. Liu, ACS Omega 4 (2019) 14511-14516.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (172) PDF downloads(17) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return