Volume 6 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
Chen Hu, Kun Ma, Yanjie Hu, Aiping Chen, Petr Saha, Hao Jiang, Chunzhong Li. Confining MoS2 nanocrystals in MOF-derived carbon for high performance lithium and potassium storage. Green Energy&Environment, 2021, 6(1): 75-82. doi: 10.1016/j.gee.2020.02.001
Citation: Chen Hu, Kun Ma, Yanjie Hu, Aiping Chen, Petr Saha, Hao Jiang, Chunzhong Li. Confining MoS2 nanocrystals in MOF-derived carbon for high performance lithium and potassium storage. Green Energy&Environment, 2021, 6(1): 75-82. doi: 10.1016/j.gee.2020.02.001

Confining MoS2 nanocrystals in MOF-derived carbon for high performance lithium and potassium storage

doi: 10.1016/j.gee.2020.02.001
  • Developing an efficient synthesis protocol to simultaneously control 2D nanomaterials’ size and dispersion is the pivot to optimize their electrochemical performance. Herein, we report the synthesis of uniform MoS2 nanocrystals well-anchored into the void space of porous carbon (donated as MoS2⊂C hybrids) by a simple confined reaction in metal–organic framework (MOF) during carbonization process. The strong confinement effect refrain MoS2 growth and aggregation, generating abundant active centers and edges, which contribute fast lithium/potassium reaction kinetics. In addition to the hybridization with the derived carbon, the MoS2⊂C hybrids exhibit rapid Li+ transfer rate (∼10−9 cm2 s−1) and greatly improved electronic conductivity. Consequently, the MoS2⊂C hybrids show ultrafast rate performances and satisfactory cycling stabilities as anode materials for both lithium and potassium ion batteries. This work demonstrates a universal tactic to achieve high dispersive 2D nanomaterials with tailorable particle size.

     

  • loading
  • [1]
    H. Li, X. Li, J. Liang, Y. Chen, Adv. Energy Mater. (2019) 1803987.
    [2]
    E. Martinez-Perinan, M.P. Down, C. Gibaja, E. Lorenzo, F. Zamora, C.E. Banks, Adv. Energy Mater. 8 (2018) 1702606.
    [3]
    K.S. Kumar, N. Choudhary, Y. Jung, J. Thomas, ACS Energy Lett.. 3 (2018) 482-495.
    [4]
    Y. Fang, R. Hu, B. Liu, Y. Zhang, K. Zhu, J. Yan, K. Ye, K. Cheng, G. Wang, D. Cao, J. Mater. Chem. 7 (2019) 5363-5372.
    [5]
    J. Xu, J. Mahmood, Y. Dou, S. Dou, F. Li, L. Dai, J.-B. Baek, Adv. Mater. 29 (2017) 1702007.
    [6]
    Y. Sun, Q. Wu, G. Shi, Energy Environ. Sci. 4 (2011) 1113.
    [7]
    X. Wang, T.S. Mathis, K. Li, Z. Lin, L. Vlcek, T. Torita, N.C. Osti, C. Hatter, P. Urbankowski, A. Sarycheva, M. Tyagi, E. Mamontov, P. Simon, Y. Gogotsi, Nat. Energy 4 (2019) 241-248.
    [8]
    K. Hantanasirisakul, Y. Gogotsi, Adv. Mater. 30 (2018) 1804779.
    [9]
    D. Er, J. Li, M. Naguib, Y. Gogotsi, V.B. Shenoy, ACS Appl. Mater. Interfaces 6 (2014) 11173-11179.
    [10]
    C. Zhang, S. Park, O. Ronan, A. Harvey, A. Seral-Ascaso, Z. Lin, N. McEvoy, C. Boland, N. Berner, G. Duesberg, P. Rozier, J. Coleman, V. Nicolosi, Small 13 (2017) 1701677.
    [11]
    Y. Wei, Y. Tao, C. Zhang, J. Wang, W. Qiao, L. Ling, D. Long, Electrochim. Acta 188 (2016) 385-392.
    [12]
    Z. Li, A. Ottmann, T. Zhang, Q. Sun, H.-P. Meyer, Y. Vaynzof, J. Xiang, R. Klingeler, J. Mater. Chem. 5 (2017) 3987-3994.
    [13]
    H. Jiang, D. Ren, H. Wang, Y. Hu, S. Guo, H. Yuan, P. Hu, L. Zhang, C. Li, Adv. Mater. 27 (2015) 3687-3695.
    [14]
    Y. Jing, Z. Zhou, C.R. Cabrera, Z. Chen, J. Phys. Chem. C 117 (2013) 25409-25413.
    [15]
    M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Chem. Rev. 113 (2013) 5364-5457.
    [16]
    W. Li, B. Zhang, R. Lin, S. Ho-Kimura, G. He, X. Zhou, J. Hu, I.P. Parkin, Adv. Funct. Mater. 28 (2018) 1705937.
    [17]
    H. Sun, J.-G. Wang, X. Zhang, C. Li, F. Liu, W. Zhu, W. Hua, Y. Li, M. Shao, ACS Sustain. Chem. Eng. 7 (2019) 5346-5354.
    [18]
    K. Chang, D. Geng, X. Li, J. Yang, Y. Tang, M. Cai, R. Li, X. Sun, Adv. Energy Mater. 3 (2013) 839-844.
    [19]
    Y. Chao, R. Jalili, Y. Ge, C. Wang, T. Zheng, K. Shu, G.G. Wallace, Adv. Funct. Mater. 27 (2017) 1700234.
    [20]
    C. Zhu, X. Mu, P.A. van Aken, Y. Yu, J. Maier, Angew. Chem. Int. Ed. 53 (2014) 2152-2156.
    [21]
    H.J. Chen, J. Huang, X.L. Lei, M.S. Wu, G. Liu, C.Y. Ouyang, B. Xu, Int J Electrochem. Sci. 8 (2013) 8.
    [22]
    H. Wu, C. Hou, G. Shen, T. Liu, Y. Shao, R. Xiao, H. Wang, Nano Res.. 11 (2018) 5866-5878.
    [23]
    Y. Jiao, A. Mukhopadhyay, Y. Ma, L. Yang, A.M. Hafez, H. Zhu, Adv. Energy Mater. 8 (2018) 1702779.
    [24]
    B. Lu, J. Liu, R. Hu, H. Wang, J. Liu, M. Zhu, Energy Storage Mater.. 14 (2018) 118-128.
    [25]
    L. Yang, S. Wang, J. Mao, J. Deng, Q. Gao, Y. Tang, O.G. Schmidt, Adv. Mater. 25 (2013) 1180-1184.
    [26]
    Q. Zhang, Y. Cui, G. Qian, Coord. Chem. Rev. 378 (2019) 310-332.
    [27]
    X. Han, H.G.W. Godfrey, L. Briggs, A.J. Davies, Y. Cheng, L.L. Daemen, A.M. Sheveleva, F. Tuna, E.J.L. McInnes, J. Sun, C. Drathen, M.W. George, A.J. Ramirez-Cuesta, K.M. Thomas, S. Yang, M. Schroder, Nat. Mater. 17 (2018) 691-696.
    [28]
    J. Lee, C.Y. Chuah, J. Kim, Y. Kim, N. Ko, Y. Seo, K. Kim, T.H. Bae, E. Lee, Angew. Chem. 130 (2018) 7995-7999.
    [29]
    X. Zhao, Y. Wang, D.-S. Li, X. Bu, P. Feng, Adv. Mater. 30 (2018) 1705189.
    [30]
    G. Ferey, Science 309 (2005) 2040-2042.
    [31]
    C. Rice, R.J. Young, R. Zan, U. Bangert, D. Wolverson, T. Georgiou, R. Jalil, K.S. Novoselov, Phys. Rev. B 87 (2013).
    [32]
    H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, Adv. Funct. Mater. 22 (2012) 1385-1390.
    [33]
    B. Chakraborty, H.S.S.R. Matte, A.K. Sood, C.N.R. Rao, J. Raman Spectrosc. 44 (2013) 92-96.
    [34]
    G. Xu, L. Yang, X. Wei, J. Ding, J. Zhong, P.K. Chu, Adv. Funct. Mater. 26 (2016) 3349-3358.
    [35]
    Y.-L. Ding, P. Kopold, K. Hahn, P.A. van Aken, J. Maier, Y. Yu, Adv. Mater. 28 (2016) 7774-7782.
    [36]
    J. Xiao, X. Wang, X.-Q. Yang, S. Xun, G. Liu, P.K. Koech, J. Liu, J.P. Lemmon, Adv. Funct. Mater. 21 (2011) 2840-2846.
    [37]
    F. Zhou, S. Xin, H.-W. Liang, L.-T. Song, S.-H. Yu, Angew. Chem. Int. Ed. 53 (2014) 11552-11556.
    [38]
    G. Wang, J. Zhang, S. Yang, F. Wang, X. Zhuang, K. Mullen, X. Feng, Adv. Energy Mater. 8 (2018).
    [39]
    C. Chen, X. Xie, B. Anasori, A. Sarycheva, T. Makaryan, M. Zhao, P. Urbankowski, L. Miao, J. Jiang, Y. Gogotsi, Angew. Chem. Int. Ed. 57 (2018) 1846-1850.
    [40]
    S. Xia, Y. Wang, Y. Liu, C. Wu, M. Wu, H. Zhang, Chem. Eng. J. 332 (2018) 431-439.
    [41]
    Q. Zhang, C.-Y. Tsai, L.-J. Li, D.-J. Liaw, Nat. Commun. 10 (2019).
    [42]
    X.H. Rui, N. Yesibolati, S.R. Li, C.C. Yuan, C.H. Chen, Solid State Ionics. 187 (2011) 58-63.
    [43]
    J. Deng, W.-B. Luo, X. Lu, Q. Yao, Z. Wang, H.-K. Liu, H. Zhou, S.-X. Dou, Adv. Energy Mater. 8 (2018) 1701610.
    [44]
    Q. Liu, X. Su, D. Lei, Y. Qin, J. Wen, F. Guo, Y.A. Wu, Y. Rong, R. Kou, X. Xiao, F. Aguesse, J. Bareno, Y. Ren, W. Lu, Y. Li, Nat. Energy 3 (2018) 936-943.
    [45]
    K. Xie, K. Yuan, X. Li, W. Lu, C. Shen, C. Liang, R. Vajtai, P. Ajayan, B. Wei, Small 13 (2017) 1701471.
    [46]
    B. Jia, Q. Yu, Y. Zhao, M. Qin, W. Wang, Z. Liu, C.-Y. Lao, Y. Liu, H. Wu, Z. Zhang, X. Qu, Adv. Funct. Mater. 28 (2018) 1803409.
    [47]
    N. Zheng, G. Jiang, X. Chen, J. Mao, Y. Zhou, Y. Li, J. Mater. Chem. 7 (2019) 9305-9315.
    [48]
    B. Jia, Y. Zhao, M. Qin, W. Wang, Z. Liu, C.-Y. Lao, Q. Yu, Y. Liu, H. Wu, Z. Zhang, X. Qu, J. Mater. Chem. 6 (2018) 11147-11153.
    [49]
    L. Xing, Q. Yu, B. Jiang, J. Chu, C.-Y. Lao, M. Wang, K. Han, Z. Liu, Y. Bao, W. Alex Wang, J. Mater. Chem. 7 (2019) 5760-5768.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (170) PDF downloads(18) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return