Volume 6 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
Pei Xiong, Peng He, Yixin Qu, Liguo Wang, Yan Cao, Shuang Xu, Jiaqiang Chen, Muhammad Ammar, Huiquan Li. The adsorption properties of NaY zeolite for separation of ethylene glycol and 1,2-butanediol: Experiment and molecular modelling. Green Energy&Environment, 2021, 6(1): 102-113. doi: 10.1016/j.gee.2019.12.006
Citation: Pei Xiong, Peng He, Yixin Qu, Liguo Wang, Yan Cao, Shuang Xu, Jiaqiang Chen, Muhammad Ammar, Huiquan Li. The adsorption properties of NaY zeolite for separation of ethylene glycol and 1,2-butanediol: Experiment and molecular modelling. Green Energy&Environment, 2021, 6(1): 102-113. doi: 10.1016/j.gee.2019.12.006

The adsorption properties of NaY zeolite for separation of ethylene glycol and 1,2-butanediol: Experiment and molecular modelling

doi: 10.1016/j.gee.2019.12.006
  • The separation of ethylene glycol (EG) and 1,2-butanediol (1,2-BDO) azeotrope in the synthesis process of EG via coal and biomass is becoming of increasing commercial and environmental importance. Selective adsorption is deemed as the most promising methods because of energy saving and environment favorable. In this paper, NaY zeolite was used to separate 1,2-BDO from EG, and its adsorption properties was then investigated. The isotherms of EG and 1,2-BDO in vapor and liquid phases from 298 to 328 K indicated that they fitted Langmuir model quite well, and the NaY zeolite absorbent favored EG more than 1,2-BDO. The Grand Canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulation techniques were conducted to investigate the competition adsorption and diffusion characteristics in different adsorption regions. It was observed that EG and 1,2-BDO molecules all have the most probable locations of the center of the 12-membered ring near the Na cations. The diffusivities of EG are lower than those of 1,2-BDO at the same adsorption concentration. At last, the breakthrough curves of the binary mixture regressed from the empirical Dose–Response model in fixed-bed column showed that the adsorption selectivity of EG could reach to as high as 2.43, verified that the NaY zeolite could effectively separate EG from 1,2-BDO. This work is also helpful for further separation of other dihydric alcohol mixtures from coal and biomass fermentation.

     

  • loading
  • [1]
    Z.-Q. Wang; Z.-N. Xu; S.-Y. Peng; Z.-F. Zhou; P.-B. Pan; L. Lin; Y.-Y. Qin; G.-C. Guo; Y.-G. Yao, Chin. J. Chem. 35 (2017) 759-768.
    [2]
    B. Abbasi; H. Guo; H. Wu; H.N. Tailor; Z.-G. Ye, Can. J. Chem. 96 (2018) 255-259.
    [3]
    S. Wang; K.-H. Yin; Y.-C. Zhang; H.-C. Liu, ASC Catal. 3 (2013) 2112-2121.
    [4]
    Q.-C. Yang; S. Zhu; Q. Yang; W.-Q. Huang; P.-J. Yu; D.-W. Zhang; Z.-B. Wang, Energy Convers. Manag. 198 (2019) 111814.
    [5]
    R.-L. Jiang; W.-L. Chen; R.-X. Zhao; Q. Wang, J. China Univ. Min. Technol. 41 (2012) 811-816.
    [6]
    W.-D. Jin; S.-L. Zhu, Petrochem. Technol. 28 (1999) 27-31.
    [7]
    A.V. Orchilles; P.J. Miguel; V. Gonzalez-Alfaro; F.J. Llopis; A. Martinez-Andreu, J. Chem. Thermodyn. 110 (2017) 4875-4880.
    [8]
    J.E. Taylor.; Hitoshi Masui, J. Phys. Chem. 105 (2001) 3532-3535.
    [9]
    H. Li; Z.-Y. Zhao; J. Qin; R. Wang; X. Gao, Ind. Eng. Chem. Res. 57 (2018) 5083-5092.
    [10]
    Y.-C. Chen; S.-K. Hung; H.-Y. Lee; I.-L. Chien, Ind. Eng. Chem. Res. 54 (2015) 3828-3843.
    [11]
    X. Niu; L.-G. Wang; J.-Y. Cao; Y. Cao; P. He; J.-Y. Zhou; H.-Q. Li, RSC Adv.. 9 (2019) 10072-10080.
    [12]
    H.-M. Yang; G.-Z. Qiu, Multipur. Util. Miner. Resour. 5 (1996) 24-28.
    [13]
    X.-W. Liu, Mod. Chem. Ind. 36 (2016) 16-19.
    [14]
    R.S. Haszeldine, Science 325 (2009) 1647-1652.
    [15]
    Y. Zhao; D.-Z. Zhao; D.-H. Zhao; K. Wang, Appl. Chem. Ind. 47 (2018) 584-588.
    [16]
    M.-T. Liang; C.-H. Lin; P.-Y. Tsai; H.-P. Wang; H.-P. Wan; T.-Y. Yang, J. Taiwan Inst. Chem. Eng. 61 (2016) 12-19.
    [17]
    S.B. McCullen; J.C. Vartuli; C.T. Kresge; W.J. Roth; J.S. Beck; K.D. Schmitt; M.E. Leonowicz; J.L. Schlenker; S.S. Shih; J.D. Lutner, A New Family of Mesoporous Molecular Sieves, Springer, Boston, 2002.
    [18]
    C.T. Kresge; M.E. Leonowicz; W.J. Roth; J.C. Vartuli; J.S. Beck, Nature 359 (1992) 710-712.
    [19]
    J. Xiao; L.-P. Zhou; L. Chen, Method for Separating Ethylene Glycol, Propylene Glycol and Butanediol. CN102372601A, 2012-03-14, 2012.
    [20]
    J.-T. Liu; W.-M. Wang; G.-Q. Liu, A Method of Refining Ethylene Glycol. CN102219641A, 2011-10-19, 2011.
    [21]
    J.-L. Yu; Y. Yang; W.-T. Chen; D. Xu; H. Guo; K. Li; H.-Q. Liu, Green Energy Environ.. 1 (2016) 166-171.
    [22]
    I. Kuzniarska-Biernacka; P. Parpot; C. Oliveira; A.R. Silva; M.J. Alves; A.M. Fonseca; I.C.N.J.o.P.C. C, J. Phys. Chem. C 118 (2014) 19042-19050.
    [23]
    J. Thoret, P.P. Man, J. Fraissard, in: M.J. Comstock, M.J. Comstock (Eds.), Fluid Catalytic Cracking III, American Chemical Society, Washington, DC, 1994, pp. 147-159.
    [24]
    M.L. McGlashan, Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix Ii: Definitions, Terminology and Symbols in Colloid and Surface Chemistry, Walter de Gruyter GmbH, Berlin/Boston, 1972.
    [25]
    Y.-Y. Zhang. reportSynthesis of Microporous and Mesoporous Molecular Sieves Fron Husk. Master Thesis, Shandong University of Technology, 2015.
    [26]
    L.-J. Liu; Y.-F. Feng; Z.-H. Chen; J. Ju; A.-W. Zeng, Chem. Ind. Eng. Prog. 33 (2014) 2552-2556.
    [27]
    X.-X. Wei; Y. Wang; A.J. Hernandez-Maldonado; Z.-F. Chen, Green Energy Environ.. 2 (2017) 363-369.
    [28]
    B. Wang; L.-H. Xie; X.Q. Wang; X.-M. Liu; J.-P. Li; J.-R. Li, Green Energy Environ.. 3 (2018) 191-228.
    [29]
    L.-P. Zhong; J. Xiao; Y.-Y. Lu, Method for Ethylene Glycol and Butanediol Separation. CN102372598A, 2012-03-14, 2012.
    [30]
    M.M.A. Mohammed; J.A. Muthanna, J. Taiwan Inst. Chem. Eng. 81 (2017) 218-224.
    [31]
    D.F. Plant; G. Maurin; R.G. Bell, J. Phys. Chem. B 111 (2007) 2836-2844.
    [32]
    L.-J. Song; L.V.C. Rees, Microporous Mesoporous Mater. 35-36 (2000) 301-314.
    [33]
    Langmuir, J. Am. Chem. Soc. 38 (1916) 2221 -2295.
    [34]
    G. Bergerhoff; W.H. Baur; W. Nowacki, Neues Jahrb. Mineral. 13 (1958) 193-200.
    [35]
    Z. Zhou; L. Hui; Z. Jiqin; C. Biaohua; T. Huiping; H. Zhenfu, Chin. J. Chem. Eng. 17 (2009) 618-624.
    [36]
    I. Halasz; S. Kim; B. Marcus, J. Phys. Chem. B 105 (2001) 10788-10796.
    [37]
    D.F. Plant; G. Maurin; R.G. Bell, J. Phys. Chem. B 110 (2006) 15926-15931.
    [38]
    G. Maurin; D.F. Plant; F. Henn; R.G. Bell, J. Phys. Chem. B 110 (2006) 18447-18454.
    [39]
    L. Yang; S.I. Sandler; D.G. Vlachos; C. Peng; H. Liu; Y. Hu, Ind. Eng. Chem. Res. 50 (2011) 14084-14089.
    [40]
    W.-D. Jin; S.-L. Zhu, Chem. Eng. Technol. 23 (2000) 151-156.
    [41]
    J. Goel; K. Kadirvelu; C. Rajagopal; V.K. Garg, J. Hazard. Mater. B 125 (2005) 211-220.
    [42]
    F.J. Garcia-Mateos; R.Ruiz-Rosas; M.D. Marques; L.M. Cotoruelo; J. Rodriguez-Mirasol; T. Cordero, Chem. Eng. J. 279 (2015) 18-30.
    [43]
    Y.H. Zhang; F. Jin; Z.T. Shen; F. Wang; R. Lynch; A.-T. Abir, Chemosphere 220 (2018) 422-431.
    [44]
    R.M. Mohamed; I.A. Mkhalid; M.A. Barakat, Arab. J. Chem. 8 (2015) 48-53.
    [45]
    H.-Y. Sun; L.-P. Sun; F. Li; Long Zhang, Fuel Process. Technol. 134 (2015) 284-289.
    [46]
    X.-Q. Yao. reportSynthesis of Zsm-5 with Controllable Morphologies and Their Adsorption/desorption Studies Master Thesis, Beijing University of Chemical Technology, 2013.
    [47]
    O. Ozdemir; M. Turan; A. Z. Turan; A. Faki; A. B. Engin, J. Hazard. Mater. 166 (2009) 647-654
    [48]
    J.M. Salman; V.O. Njoku; B.H. Hameed, Chem. Eng. J. 174 (2011) 33-40.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (215) PDF downloads(27) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return