Jianwen Lan, Ye Qu, Ping Xu, Jianmin Sun. Novel HBD-Containing Zn (dobdc) (datz) as efficiently heterogeneous catalyst for CO2 chemical conversion under mild conditions. Green Energy&Environment, 2021, 6(1): 66-74. doi: 10.1016/j.gee.2019.12.005
Citation: Jianwen Lan, Ye Qu, Ping Xu, Jianmin Sun. Novel HBD-Containing Zn (dobdc) (datz) as efficiently heterogeneous catalyst for CO2 chemical conversion under mild conditions. Green Energy&Environment, 2021, 6(1): 66-74. doi: 10.1016/j.gee.2019.12.005

Novel HBD-Containing Zn (dobdc) (datz) as efficiently heterogeneous catalyst for CO2 chemical conversion under mild conditions

doi: 10.1016/j.gee.2019.12.005
  • A novel Zn-based metal–organic framework Zn (dobdc) (datz) [Zn2(H2dobdc) (datz)2·1.5DMF] with plentiful hydrogen bond donors (HBD) groups was facilely synthesized from mixed ligands. The dual activation of metal Zn sites and HBD groups for epoxides by forming Zn–O adduct and hydrogen bonds facilitated the ring-opening of epoxide substrate, which is critical for the subsequent CO2 fixation. Also, the existence of micropores and N-rich units in Zn (dobdc) (datz) afforded affinity towards CO2, which is beneficial to further improvement on catalytic CO2 conversion performance. Satisfactorily, Zn (dobdc) (datz)/Bu4NBr system was proved efficient heterogeneous catalyst for the CO2 cycloaddition with epoxides, and 98% propylene carbonate yield was obtained under mild conditions (80 °C, 1.5 MPa and solvent-free). In addition, Zn (dobdc) (datz)/Bu4NBr exhibited remarkable versatility to different epoxides and could be completely recycled over six runs with high catalytic activity. The highly stable, easily recycle and solvent-free Zn-based MOF reported here displays eco-friendly and efficient performance to CO2 conversion.

     

  • [1]
    Patel, P., Parmar, B., Kureshy, R. I., Khan, N. U., Suresh, E. Efficient Solvent-Free Carbon Dioxide Fixation Reactions with Epoxides Under Mild Conditions by Mixed-Ligand Zinc(II) Metal-Organic Frameworks. ChemCatChem 2018, 10(11), 2401-2408.
    [2]
    Lin, S., Diercks, C. S., Zhang, Y. B., Kornienko, N., Nichols, E. M., Zhao, Y., Paris, A. R., Kim, D., Yang, P., Yaghi, O. M., Chang, C. J. Covalent Organic Frameworks Comprising Cobalt Porphyrins for Catalytic CO2 Reduction in Water. Science 2015, 349(6253), 1208-1213.
    [3]
    Puthiaraj, P., Ravi, S., Yu, K., Ahn, W. S. CO2 Adsorption and Conversion into Cyclic Carbonates over a Porous ZnBr2-Grafted N-Heterocyclic Carbene-based Aromatic Polymer. Appl. Catal. B: Environ. 2019, 25, 195-205.
    [4]
    Leonard, G. L. M., Pirard, S. L., Belet, A., Grignard, B., Detrembleur, C., Jerome, C., Heinrichs, B. Optimizing Support Properties of Heterogeneous Catalysts for the Coupling of Carbon Dioxide with Epoxides. Chem. Eng. J. 2019, 371, 719-729.
    [5]
    Li, Y. X., Zhang, X., Xu, P., Jiang, Z. M., Sun, J. M. The Design of a Novel and Resistant Zn(PZDC)(ATZ) MOF Catalyst for the Chemical Fixation of CO2 under Solvent-Free Conditions. Inorg. Chem. Front. 2019, 6(1), 317-325.
    [6]
    Xu, B. H., Wang, J. Q., Sun, J., Huang, Y., Zhang, J. P., Zhang, X. P., Zhang, S. J. Fixation of CO2 into Cyclic Carbonates Catalyzed by Ionic Liquids: A Multi-Scale Approach. Green Chem. 2015, 17(1), 108-122.
    [7]
    Song, H. B., Wang, Y. J., Xiao, M., Liu, L., Liu, Y. L., Liu, X. F., Gai, H. J. Design of Novel Poly(Ionic Liquids) for the Conversion of CO2 to Cyclic Carbonates under Mild Conditions without Solvent. ACS Sustainable. Chem. Eng. 2019, 10(7), 9489-9497.
    [8]
    Li, J. W., Fan, Y. M., Ren, Y. W., Liao, J. H., Qi, C. R., Jiang, H. F. Development of Isostructural Porphyrin-Salen Chiral Metal-Organic Frameworks Through Postsynthetic Metalation Based on Single-Crystal to Single-Crystal Transformation. Inorg. Chem. 2018, 57, 1203-1212.
    [9]
    Epp, K., Semrau, A. L., Cokoja, M., Fischer, R. A. Dual Site Lewis-Acid Metal-Organic Framework Catalysts for CO2 Fixation: Counteracting Effects of Node Connectivity, Defects and Linker Metalation. ChemCatChem 2018, 10(16), 3506-3512.
    [10]
    Li, L. H., Feng, X. L., Cui, X. H., Ma, Y. X., Ding, S. Y., Wang, W. Salen-Based Covalent Organic Framework. J. Am. Chem. Soc. 2017, 139, 6042-6045.
    [11]
    Li, J. W., Ren, Y. W., Yue, C. L., Fan, Y. M., Qi, C. R., Jiang, H. F. Highly Stable Chiral Zirconium-Metallosalen Frameworks for CO2 Conversion and Asymmetric C-H Azidation. ACS Appl. Mater. Interfaces. 2018, 10(42), 36047-36057.
    [12]
    North, M., Pasquale, R., Young, C. Synthesis of Cyclic Carbonates from Epoxides and CO2. Green Chem. 2010, 12(9), 1514-1539.
    [13]
    Gao, C. Y., Yang, Y., Liu, J., Sun, Z. M. A Ni(II)-Cluster-Based MOF as an Efficient Heterogeneous Catalyst for the Chemical Transformation of CO2. Dalton Trans. 2019, 48(4), 1246-1250.
    [14]
    Parmar, B., Patel, P., Pillai, R. S., Kureshy, R. I., Noor-ul, H. K., Suresh, E. Efficient Catalytic Conversion of Terminal/Internal Epoxides to Cyclic Carbonates by Porous Co(II) MOF under Ambient Conditions: Structure-Property Correlation and Computational Studies. J. Mater. Chem. A. 2019, 7(6), 2884-2894.
    [15]
    Gao W. Y., Chen Y., Niu Y. H., Williams, K., Cash, L., Perez, P. J., Wojtas L., Cai J. F., Chen Y. S., Ma, S. Q. Crystal Engineering of an nbo Topology Metal-Organic Framework for Chemical Fixation of CO2 under Ambient Conditions. Angew. Chem. Int. Ed. 2014, 53(10), 2615-2619.
    [16]
    Sun, Q., Dai, Z. F., Meng, X. J., Xiao, F. S. Porous Polymer Catalysts with Hierarchical Structures. Chem. Soc. Rev. 2015, 44(17), 6018-6034.
    [17]
    Yang, L. L., Yu, L., Diao, G. Q., Sun, M., Cheng, G., Chen, S. Y. Zeolitic Imidazolate Framework-68 as an Efficient Heterogeneous Catalyst for Chemical Fixation of Carbon Dioxide. J. Mol. Catal. A-Chem. 2014, 392, 278-283.
    [18]
    Jiang, Z. R., Wang, H. W., Hu, Y. L., Lu, J. L., Jiang, H. L. Polar Group and Defect Engineering in a Metal-Organic Framework: Synergistic Promotion of Carbon Dioxide Sorption and Conversion. ChemSusChem 2015, 8(5), 878-885.
    [19]
    Martin, C., Fiorani, G., Kleij, A. W. Recent Advances in the Catalytic Preparation of Cyclic Organic Carbonates. ACS Catal. 2015, 5(2), 1353-1370.
    [20]
    Liu, M. S., Wang, X., Jiang, Y. C, Sun, J. M., Arai, M. Hydrogen Bond Activation Strategy for Cyclic Carbonates Synthesis from Epoxides and CO2: Current State-of-the Art of Catalyst Development and Reaction Analysis. Catal. Rev. 2018, 2, 214-269.
    [21]
    He, H. M., Sun, Q., Gao, W. Y., Perman, J. A., Sun, F. X., Zhu, G. S., Aguila B., Forrest K., Space B., Ma, S. Q. A Stable metal-organic Framework Featuring a Local Buffer Environment for Carbon Dioxide Fixation. Angew. Chem. Int. Ed. 2018, 57(17), 4657-4662.
    [22]
    Lan, J. W., Liu, M. S., Lu, X. Y., Zhang, X., Sun, J. M. Novel 3D Nitrogen-Rich Metal Organic Framework for Highly Efficient CO2 Adsorption and Catalytic Conversion to Cyclic Carbonates under Ambient Temperature. ACS Sustainable. Chem. Eng. 2018, 6(7), 8727-8735.
    [23]
    Wang, X. J., Li, P. Z., Chen, Y. F., Zhang, Q., Zhang, H. C., Chan, X. X., Ganguly, R., Li, Y. X., Jiang, J. W., Zhao, Y. L. A Rationally Designed Nitrogen-Rich Metal-Organic Framework and its Exceptionally High CO2 and H2 Uptake Capability. Sci. Rep. 2013, 3.
    [24]
    CrysAlisPro Version 1.171.35.19; Agilent Technologies Inc.: Santa Clara, CA, USA, 2011
    [25]
    Hao, H. G., Wang, Y. C., Yuan, S. X., Chen, D. M., Li, D. C., Dou, J. M. Two Zn(II)-Based Metal-Organic Frameworks for Selective Detection of Nitroaromatic Explosives and Fe3+ Ion. Inorg. Chem. Commun. 2018, 98, 120-126.
    [26]
    Chouhan, A., Pandey, A., Mayer, P. Synthesis Crystal Structure, Photoluminescence and Photocatalytic Property of a New Three Dimensional Zinc(II) Tetrazole Framework. J. Chem. Sci. 2015, 127(9), 1599-1606.
    [27]
    Chakarova, K., Strauss, I., Mihaylov, M., Drenchev, N., Hadjiivanov, K. Evolution of Acid and Basic Sites in UiO-66 and UiO-66-NH2 Metal-Organic Frameworks: FTIR Study by Probe Molecules. Micropor. Mesopor. Mat. 2019, 281, 110-122.
    [28]
    Zhang, J. Y., Ma, X. L., Wang, Z. X., He, X., Shao, M., Li, M. X. Hydrolysis Controlled Synthetic Strategy and Structural Variation of Hydroxyl-Metal Clusters and Metal-Organic Frameworks Based on Tripodal Ether-Linked 1,3,5-Tris(carboxymethoxy)benzene. Cryst. Growth Des. 2019, 4(19), 2308-2321.
    [29]
    Babu, R., Kathalikkattil, A. C., Roshan, R., Tharun, J., Kim, D. W., Park, D. W. Dual-Porous Metal Organic Framework for Room Temperature CO2 Fixation via Cyclic Carbonate Synthesis. Green Chem. 2016, 18(1), 232-242.
    [30]
    Hu, Y., Kazemian, H., Rohani, S., Huang, Y., Song, Y. In Situ High Pressure Study of ZIF-8 by FTIR Spectroscopy. Chem. Commun. 2011, 47(47), 12694-12696.
    [31]
    Henke, S., Schneemann, A., Wütscher, A., Fischer, R. A. Directing the Breathing Behavior of Pillared-Layered Metal-Organic Frameworks via a Systematic Library of Functionalized Linkers Bearing Flexible Substituents. J. Am. Chem. Soc. 2012, 134(22), 9464-9474.
    [32]
    Zhou, H. F., Liu, B., Hou, L., Zhang, W. Y., Wang, Y. Y. Rational Construction of a Stable Zn4O-Based MOF for Highly Efficient CO2 Capture and Conversion. Chem. Commun. 2018, 54(5), 456-459.
    [33]
    He H. M., Perman J. A., Zhu G. S., Ma S. Q. Metal-organic Frameworks for CO2 Chemical Transformations. Small 2016, 12 (46), 6309-6324.
    [34]
    Aguila, B., Sun, Q., Wang, X. L, O'Rourke, E., Al-Enizi, A. M., Nafady, A., Ma, S. Q. Lower Activation Energy for Catalytic Reactions through Host-Guest Cooperation within Metal-Organic Frameworks. Angew. Chem. Int. Ed. 2018, 57(32), 10107-10111.
    [35]
    Roshan, K. R., Kathalikkattil, A. C., Tharun, J., Kim, D. W., Won, Y. S., Park, D. W. Amino Acid/KI as Multi-Functional Synergistic Catalysts for Cyclic Carbonate Synthesis from CO2 under Mild Reaction Conditions: a DFT Corroborated Study. Dalton Trans. 2014, 43(5), 2023-2031.
    [36]
    Song, L. L., Chen, C., Chen, X. B., Zhang, N. Isomorphic MOFs Functionalized by Free-Standing Acylamide and Organic Groups Serving as Self-Supported Catalysts for the CO2 Cycloaddition Reaction. New J. Chem. 2016, 40(3), 2904-2909.
    [37]
    Jeong, G. S., Kathalikkattil, A. C., Babu, R., Chung, Y. G., Park, D. W. Cycloaddition of CO2 with Epoxides by Using an Amino-Acid-Based Cu(II)-Tryptophan MOF Catalyst. Chinese J. Catal. 2018, 39(1), 63-70.
    [38]
    Patel, P.; Parmar, B.; Kureshy, R. I.; Noor-ul, H. K.; Suresh, E. Amine-Functionalized Zn (II) MOF as an Efficient Multifunctional Catalyst for CO2 Utilization and Sulfoxidation Reaction. Dalton Trans. 2018, 47(24), 8041-8051.
    [39]
    Li, Y. H., Wang, S. L., Su, Y. C., Ko, B. T., Tsai, C. Y., Lin, C. H. Microporous 2D Indium Metal-Organic Frameworks for Selective CO2 Capture and Their Application in the Catalytic CO2-Cycloaddition of Epoxides. Dalton Trans. 2018, 47(28), 9474-9481.
    [40]
    Ugale, B., Kumar, S., Dhilip Kumar, T. J., Nagaraja, C. M. Environmentally Friendly, Co-catalyst-Free Chemical Fixation of CO2 at Mild Conditions Using Dual-Walled Nitrogen-Rich Three-Dimensional Porous Metal-Organic Frameworks. Inorg. Chem. 2019, 6(58), 3925-3936.
    [41]
    Maina, J. W., Pozo-Gonzalo, C., Kong, L., Schutz, J., Hill, M., Dumee, L. F. Metal Organic Framework Based Catalysts for CO2 Conversion. Mater. Horiz. 2017, 4(3), 345-361.
    [42]
    Fan, Y., Li, X., Gao, K., Liu, Y., Meng, X., Wu, J., Hou, H. Co(II)-Cluster-Based Metal-Organic Frameworks as Efficient Heterogeneous Catalysts for Selective Oxidation of Arylalkanes. CrystEngComm 2019, 21(10), 1666-1673.
    [43]
    Morokuma, K. Why do Molecules interact? The Origin of Electron Donor-Acceptor Complexes, Hydrogen Bonding and Proton Affinity. Accounts Chem. Res. 1977, 10(8), 294-300.
    [44]
    Maity, K., Karan, C. K., Biradha, K. Porous Metal-Organic Polyhedral Framework Containing Cuboctahedron Cages as SBUs with High Affinity for H2 and CO2 Sorption: A Heterogeneous Catalyst for Chemical Fixation of CO2. Chem-Eur. J. 2018, 24(43), 10988-10993.
    [45]
    Goettmann, F., Thomas, A., Antonietti, M. Metal-Free Activation of CO2 by Mesoporous Graphitic Carbon Nitride. Angew. Chem. Int. Ed. 2007, 46(15), 2717-2720.
  • Relative Articles

    [1]Yingchun Niu, Yinping Liu, Tianhang Zhoua, Chao Guo, Guangfu Wu, Wenjie Lv, Ali Heydari, Bo Pengb, Chunming Xu, Quan Xua. Insights into novel indium catalyst to kW scale low cost, high cycle stability of iron-chromium redox flow battery.  Green Energy&Environment. doi: 10.1016/j.gee.2024.04.005
    [2]Jiaxin Li, Shuai Zhang, Yumeng Hua, Yichao Lin, Xin Wen, Ewa Mijowska, Tao Tang, Xuecheng Chen, Rodney S. Ruoff. Facile synthesis of accordion-like porous carbon from waste PET bottles-based MIL-53(Al) and its application for high-performance Zn-ion capacitor.  Green Energy&Environment, 2024, 9(7): 1138-1150. doi: 10.1016/j.gee.2023.01.002
    [3]Xiang-Bin Shao, Zhi-Wei Xing, Si-Yu Liu, Ke-Xin Miao, Shi-Chao Qi, Song-Song Peng, Xiao-Qin Liu, Lin-Bing Sun. Atomically dispersed calcium as solid strong base catalyst with high activity and stability.  Green Energy&Environment, 2024, 9(10): 1619-1626. doi: 10.1016/j.gee.2023.08.003
    [4]Shaodi Wu, Ning Zhang, Chizhou Wang, Xianglin Hou, Jie Zhao, Shiyu Jia, Jiancheng Zhao, Xiaojing Cui, Haibo Jin, Tiansheng Deng. An efficient and mild recycling of waste melamine formaldehyde foams by alkaline hydrolysis.  Green Energy&Environment, 2024, 9(5): 919-926. doi: 10.1016/j.gee.2022.10.008
    [5]Xuefeng Bai, Yi Li, Yabo Xie, Qiancheng Chen, Xin Zhang, Jian-Rong Li. High-throughput screening of CO2 cycloaddition MOF catalyst with an explainable machine learning model.  Green Energy&Environment. doi: 10.1016/j.gee.2024.01.010
    [6]Wenjie Xiong, Xiaomin Zhang, Xingbang Hu, Youting Wu. Self-separation ionic liquid catalyst for the highly effective conversion of H2S by α,β-unsaturated carboxylate esters under mild conditions.  Green Energy&Environment, 2024, 9(9): 1440-1448. doi: 10.1016/j.gee.2023.03.001
    [7]Luming Wu, Ruge Zhao, Guo Du, Huan Wang, Machuan Hou, Wei Zhang, Pingchuan Sun, Tiehong Chen. Hierarchically porous Fe/N/S/C nanospheres with high-content of Fe-Nx for enhanced ORR and Zn-air battery performance.  Green Energy&Environment, 2023, 8(6): 1693-1702. doi: 10.1016/j.gee.2022.03.014
    [8]Jingsha Li, Shijie Yi, Ranjusha Rajagopalan, Zejie Zhang, Yougen Tang, Haiyan Wang. Micropores regulating enables advanced carbon sphere catalyst for Zn-air batteries.  Green Energy&Environment, 2023, 8(1): 308-317. doi: 10.1016/j.gee.2021.03.003
    [9]Jianjun Chen, Rongqiang Yin, Gongda Chen, Junyu Lang, Xiaoping Chen, Xuefeng Chu, Junhua Li. Selective capture of Tl2O from flue gas with formation of p-n junction on V2O5-WO3/TiO2 catalyst under working conditions.  Green Energy&Environment, 2023, 8(1): 4-9. doi: 10.1016/j.gee.2021.12.001
    [10]Xiaoqiang Du, Yangyang Ding, Xiaoshuang Zhang. MOF-derived Zn-Co-Ni sulfides with hollow nanosword arrays for high-efficiency overall water and urea electrolysis.  Green Energy&Environment, 2023, 8(3): 798-811. doi: 10.1016/j.gee.2021.09.007
    [11]Muhammad Ibrar Ahmed, David Brynn Hibbert, Chuan Zhao. Rational catalyst design and mechanistic evaluation for electrochemical nitrogen reduction at ambient conditions.  Green Energy&Environment, 2023, 8(6): 1567-1595. doi: 10.1016/j.gee.2022.10.001
    [12]Yingying Yang, Honglei Fan, Tianbin Wu, Guanying Yang, Buxing Han. Complete degradation of high-loaded phenol using tungstate-based ionic liquids with long chain substituent at mild conditions.  Green Energy&Environment, 2023, 8(2): 452-458. doi: 10.1016/j.gee.2021.05.009
    [13]Xuyan Wang, Jianwei Bai, Yantao Wang, Xiaoying Lu, Zehua Zou, Junfeng Huang, Cailing Xu. Sulfur vacancies-doped Sb2S3 nanorods as high-efficient electrocatalysts for dinitrogen fixation under ambient conditions.  Green Energy&Environment, 2022, 7(4): 755-762. doi: 10.1016/j.gee.2020.11.016
    [14]Fulong Zhu, Mingyuan Zhu, Lihua Kang. B-doped activated carbon as a support for a high-performance Zn-based catalyst in acetylene acetoxylation.  Green Energy&Environment, 2022, 7(2): 221-228. doi: 10.1016/j.gee.2020.07.027
    [15]Chen Hu, Kun Ma, Yanjie Hu, Aiping Chen, Petr Saha, Hao Jiang, Chunzhong Li. Confining MoS2 nanocrystals in MOF-derived carbon for high performance lithium and potassium storage.  Green Energy&Environment, 2021, 6(1): 75-82. doi: 10.1016/j.gee.2020.02.001
    [16]Yu Du, Yihan Xu, Weiwei Zhou, Yaoyang Yu, Xinzhou Ma, Fei Liu, Jinglong Xu, Yongming Zhu. MOF-derived zinc manganese oxide nanosheets with valence-controllable composition for high-performance Li storage.  Green Energy&Environment, 2021, 6(5): 703-714. doi: 10.1016/j.gee.2020.06.010
    [17]Mengyang Dong, Xu Liu, Lixue Jiang, Zhengju Zhu, Yajie Shu, Shan Chen, Yuhai Dou, Porun Liu, Huajie Yin, Huijun Zhao. Cobalt-doped Mn3O4 nanocrystals embedded in graphene nanosheets as a high-performance bifunctional oxygen electrocatalyst for rechargeable Zn–Air batteries.  Green Energy&Environment, 2020, 5(4): 499-505. doi: 10.1016/j.gee.2020.06.022
    [18]Gang Wang, Zengxi Li, Chunshan Li, Suojiang Zhang. In-situ generated ionic liquid catalyzed aldol condensation of trioxane with ester in mild homogeneous system.  Green Energy&Environment, 2019, 4(3): 293-299. doi: 10.1016/j.gee.2018.11.004
    [19]Haozhe Zhang, Xinyue Zhang, Haodong Li, Yifeng Zhang, Yinxiang Zeng, Yexiang Tong, Peng Zhang, Xihong Lu. Flexible rechargeable Ni//Zn battery based on self-supported NiCo2O4 nanosheets with high power density and good cycling stability.  Green Energy&Environment, 2018, 3(1): 56-62. doi: 10.1016/j.gee.2017.09.003
    [20]G. Sibi. Biosorption of chromium from electroplating and galvanizing industrial effluents under extreme conditions using Chlorella vulgaris.  Green Energy&Environment, 2016, 1(2): 172-177. doi: 10.1016/j.gee.2016.08.002
  • Cited by

    Periodical cited type(43)

    1. Zhang, H., Duan, X., Han, M. et al. Experimental and theoretical investigations of zwitterionic hypercrosslinked polymers as robust catalysts for CO2 fixation under cocatalyst- and solvent-free conditions. Separation and Purification Technology, 2025, 354: 128817. doi:10.1016/j.seppur.2024.128817
    2. Li, F., Yun, S., Gui, L. et al. Hydrazino-containing Zr-MOF for enhanced Lewis acid-base catalysis of CO2 fixation into cyclocarbonate. Journal of Environmental Chemical Engineering, 2024, 12(6): 114311. doi:10.1016/j.jece.2024.114311
    3. Wang, H., Gao, Z., Sun, J. The synthesis of amide bond by a simple one-step method to connect ionic liquid and MIL-101-NH2 firmly for efficient CO2 cycloaddition. Separation and Purification Technology, 2024, 344: 127061. doi:10.1016/j.seppur.2024.127061
    4. Zhou, Y., Shao, S., Han, X. et al. The Flower-Shaped Co (II) and Cu (II) Phthalocyanine Polymers as Highly Efficient and Stable Catalysts for Chemical Fixation of CO2 to Cyclic Carbonate. C-Journal of Carbon Research, 2024, 10(3): 74. doi:10.3390/c10030074
    5. Xiong, W., Zhang, X., Hu, X. et al. Self-separation ionic liquid catalyst for the highly effective conversion of H2S by α, β-unsaturated carboxylate esters under mild conditions. Green Energy and Environment, 2024, 9(9): 1440-1448. doi:10.1016/j.gee.2023.03.001
    6. Nam, H.Y., Lee, G., Jhung, S.H. Selective CO2 adsorption over a Zr-based metal–organic framework functionalized with tris(2-aminoethyl)amine. Chemical Engineering Journal, 2024, 494: 153072. doi:10.1016/j.cej.2024.153072
    7. Huang, T.-T., Xu, Y.-P., Bai, Z.-L. et al. Boosting the catalytic activity via an acid-base synergistic effect for direct conversion of CO2 and methanol to dimethyl carbonate. New Journal of Chemistry, 2024, 48(33): 14727-14735. doi:10.1039/d4nj01567c
    8. Jeong, S.-M., Cho, K.H., Lee, S.-K. et al. Carbon Dioxide Capture in a Carbonate-Pillared Ultramicroporous Metal-Organic Framework. ACS Sustainable Chemistry and Engineering, 2024, 12(21): 8165-8173. doi:10.1021/acssuschemeng.4c01172
    9. Liu, X., Li, N., Zhang, Y. et al. Synthesis of PEI Grafted Poly (Ionic Liquid)s: Optimization and Kinetics Modeling of Effective CO2 Fixation Reactions. ChemistrySelect, 2024, 9(15): e202303765. doi:10.1002/slct.202303765
    10. Nasiriani, T., Adabi Nigjeh, N., Shaabani, A. Core-shell magnetic zinc-based molecularly imprinted polymer: a robust heterogeneous catalytic nanoreactor toward the CO2 fixation reaction. Environmental Science: Nano, 2024, 11(4): 1622-1635. doi:10.1039/d3en00554b
    11. Liu, W., Huang, Y., Ji, C. et al. Eu3+-Doped Anionic Zinc-Based Organic Framework Ratio Fluorescence Sensing Platform: Supersensitive Visual Identification of Prescription Drugs. ACS Sensors, 2024, 9(2): 759-769. doi:10.1021/acssensors.3c02069
    12. Hui, W., Xu, X.-Y., Wang, H.-J. Task-Specific Ionic Liquids Catalysts Efficiently Catalyze Atmospheric CO2 Gas Mixture to Cyclic Carbonates Under Mild Conditions. Catalysis Letters, 2024, 154(2): 749-759. doi:10.1007/s10562-023-04324-z
    13. Zhao, B., Li, C., Hu, T. et al. Nanoporous Pb3-Organic Framework for Catalytic Cycloaddition of CO2 with Epoxides and Knoevenagel Condensation. ACS Applied Nano Materials, 2023, 6(24): 23196-23206. doi:10.1021/acsanm.3c04586
    14. Li, N., Qin, S., Hao, Y. et al. Nanoarchitectonics of polymeric crown-ether analog of Tröger base combined with potassium iodide and acids synergy in fixation of CO2 and epoxides. Molecular Catalysis, 2023, 545: 113241. doi:10.1016/j.mcat.2023.113241
    15. Yoo, D.K., Jhung, S.H. N-formylation of amines with CO2 by using Zr-based metal-organic frameworks: Contribution of defect sites of MOFs to N-formylation. Applied Catalysis A: General, 2023, 659: 119170. doi:10.1016/j.apcata.2023.119170
    16. Zhong, S., Tian, L., Yi, L. et al. Phosphine-based ionic liquids for CO2 chemical fixation: Improving stability and activity by asymmetric flexible steric hindrance. Journal of Environmental Chemical Engineering, 2023, 11(3): 109883. doi:10.1016/j.jece.2023.109883
    17. Podder, J., Patra, B.R., Pattnaik, F. et al. A Review of Carbon Capture and Valorization Technologies. Energies, 2023, 16(6): 2589. doi:10.3390/en16062589
    18. Jiang, B., Liu, J., Yang, G. et al. Efficient conversion of CO2 into cyclic carbonates under atmospheric by halogen and metal-free poly(ionic liquid)s. Chinese Journal of Chemical Engineering, 2023, 55: 202-211. doi:10.1016/j.cjche.2022.05.018
    19. Li, Q., Dai, W., Mao, J. et al. Facile integration of hydroxyl ionic liquid into Cr-MIL-101 as multifunctional heterogeneous catalyst for promoting the efficiency of CO2 conversion. Microporous and Mesoporous Materials, 2023, 350: 112461. doi:10.1016/j.micromeso.2023.112461
    20. Guo, S., Liu, Y., Wang, Y. et al. Interfacial role of Ionic liquids in CO2 electrocatalytic Reduction: A mechanistic investigation. Chemical Engineering Journal, 2023, 457: 141076. doi:10.1016/j.cej.2022.141076
    21. Chen, Y., Yu, J., Yang, Y. et al. A continuous process for cyclic carbonate synthesis from CO2 catalyzed by the ionic liquid in a microreactor system: Reaction kinetics, mass transfer, and process optimization. Chemical Engineering Journal, 2023, 455: 140670. doi:10.1016/j.cej.2022.140670
    22. Ma, P., Ding, M., Rong, W. et al. Acetic acid-assisted polyhydroxy acid modification of a zirconium-based MOF for synergistic CO2fixation. Journal of Environmental Chemical Engineering, 2022, 10(6): 108739. doi:10.1016/j.jece.2022.108739
    23. El-Sheikh, S.M., Sheta, S.M., Salem, S.R. et al. Prostate-Specific Antigen Monitoring Using Nano Zinc(II) Metal–Organic Framework-Based Optical Biosensor. Biosensors, 2022, 12(11): 931. doi:10.3390/bios12110931
    24. Yao, S.Y., Iqbal, A., Abu Bakar, N.H.H. et al. CO2 Cycloaddition to Styrene Oxide Catalysed by ZnBr2 Impregnated Rice Husk Ash Silica: Structural and Kinetics Studies. ChemistrySelect, 2022, 7(40): e202201970. doi:10.1002/slct.202201970
    25. Tapiador, J., Leo, P., Gándara, F. et al. Robust Cu-URJC-8 with mixed ligands for mild CO2cycloaddition reaction. Journal of CO2 Utilization, 2022, 64: 102166. doi:10.1016/j.jcou.2022.102166
    26. Liu, F., Duan, X., Dai, X. et al. Metal-decorated porous organic frameworks with cross-linked pyridyl and triazinyl as efficient platforms for CO2 activation and conversion under mild conditions. Chemical Engineering Journal, 2022, 445: 136687. doi:10.1016/j.cej.2022.136687
    27. Yang, P., Lu, G., Yang, Q. et al. Analyzing acetylene adsorption of metal–organic frameworks based on machine learning. Green Energy and Environment, 2022, 7(5): 1062-1070. doi:10.1016/j.gee.2021.01.006
    28. Wang, S., Jiang, N., Peng, J. et al. Efficient Synthesis of Diphenyl Carbonate from CO2, Phenol, and Carbon Tetrachloride under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2022, 10(38): 12689-12697. doi:10.1021/acssuschemeng.2c03400
    29. Chen, Y., Chen, C., Li, X. et al. Hydroxyl-ionic liquid functionalized metalloporphyrin as an efficient heterogeneous catalyst for cooperative cycloaddition of CO2with epoxides. Journal of CO2 Utilization, 2022, 62: 102107. doi:10.1016/j.jcou.2022.102107
    30. Kong, Y., Lu, C., Wang, J. et al. Molecular Regulation Based on Functional Trimetallic Metal-Organic Frameworks for Efficient Oxygen Evolution Reaction. Inorganic Chemistry, 2022, 61(28): 10934-10941. doi:10.1021/acs.inorgchem.2c01484
    31. Li, H.-J., Zhang, X.-Y., Huang, K. et al. A novel 2D zinc(II)-organic framework for efficient catalytic cycloaddition of CO2 with epoxides. Polyhedron, 2022, 220: 115850. doi:10.1016/j.poly.2022.115850
    32. Liu, F., Du, S., Zhang, W. et al. Construction of zwitterionic porous organic frameworks with multiple active sites for highly efficient CO2 adsorption and synergistic conversion. Chemical Engineering Journal, 2022, 435: 134921. doi:10.1016/j.cej.2022.134921
    33. Jun, H.J., Yoo, D.K., Jhung, S.H. Metal-organic framework (MOF-808) functionalized with ethyleneamines: Selective adsorbent to capture CO2under low pressure. Journal of CO2 Utilization, 2022, 58: 101932. doi:10.1016/j.jcou.2022.101932
    34. Lu, Z., He, J., Guo, B. et al. Efficient homogenous catalysis of CO2 to generate cyclic carbonates by heterogenous and recyclable polypyrazoles. Chinese Journal of Chemical Engineering, 2022, 43: 110-115. doi:10.1016/j.cjche.2022.01.009
    35. Weng, S., Dong, J., Ma, J. et al. Biocompatible anions-derived ionic liquids a sustainable media for CO2 conversion into quinazoline-2, 4(1H, 3H)-diones under additive-free conditions. Journal of CO2 Utilization, 2022, 56: 101841. doi:10.1016/j.jcou.2021.101841
    36. Zhang, J., Zou, M., Li, Q. et al. Thermally activated construction of open metal sites on a Zn-organic framework: An effective strategy to enhance Lewis acid properties and catalytic performance for CO2 cycloaddition reactions. Applied Surface Science, 2022, 572: 151408. doi:10.1016/j.apsusc.2021.151408
    37. Yuan, M., Chen, J., Zhang, H. et al. Host-guest molecular interaction promoted urea electrosynthesis over a precisely designed conductive metal-organic framework. Energy and Environmental Science, 2022. doi:10.1039/d1ee03918k
    38. Yoo, D.K., Jhung, S.H. Selective CO2 adsorption at low pressure with a Zr-based UiO-67 metal-organic framework functionalized with aminosilanes. Journal of Materials Chemistry A, 2022. doi:10.1039/d1ta09772e
    39. Zhu, Y., Gu, J., Yu, X. et al. The multifunctional design of metal-organic framework by applying linker desymmetrization strategy: Synergistic catalysis for high CO2-epoxide conversion. Inorganic Chemistry Frontiers, 2021, 8(23): 4990-4997. doi:10.1039/d1qi00960e
    40. He, L., Zhang, W., Yang, Y. et al. Novel biomass-derived deep eutectic solvents promoted cycloaddition of CO2 with epoxides under mild and additive-free conditions. Journal of CO2 Utilization, 2021, 54: 101750. doi:10.1016/j.jcou.2021.101750
    41. Yoo, D.K., Ahmed, I., Sarker, M. et al. Metal–organic frameworks containing uncoordinated nitrogen: Preparation, modification, and application in adsorption. Materials Today, 2021, 51: 566-585. doi:10.1016/j.mattod.2021.07.021
    42. Musa, S.G., Aljunid Merican, Z.M., Akbarzadeh, O. Study on selected metal-organic framework-based catalysts for cycloaddition reaction of co2 with epoxides: A highly economic solution for carbon capture and utilization. Polymers, 2021, 13(22): 3905. doi:10.3390/polym13223905
    43. Bondarenko, G.N., Ganina, O.G., Lysova, A.A. et al. Cyclic carbonates synthesis from epoxides and CO2 over NIIC-10 metal-organic frameworks. Journal of CO2 Utilization, 2021, 53: 101718. doi:10.1016/j.jcou.2021.101718

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401234
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.7 %FULLTEXT: 20.7 %META: 71.5 %META: 71.5 %PDF: 7.8 %PDF: 7.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.6 %其他: 3.6 %China: 42.5 %China: 42.5 %India: 0.5 %India: 0.5 %Mexico: 2.1 %Mexico: 2.1 %Seychelles: 0.5 %Seychelles: 0.5 %United States: 50.8 %United States: 50.8 %其他ChinaIndiaMexicoSeychellesUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (137) PDF downloads(15) Cited by(43)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return