Volume 6 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
Jianwen Lan, Ye Qu, Ping Xu, Jianmin Sun. Novel HBD-Containing Zn (dobdc) (datz) as efficiently heterogeneous catalyst for CO2 chemical conversion under mild conditions. Green Energy&Environment, 2021, 6(1): 66-74. doi: 10.1016/j.gee.2019.12.005
Citation: Jianwen Lan, Ye Qu, Ping Xu, Jianmin Sun. Novel HBD-Containing Zn (dobdc) (datz) as efficiently heterogeneous catalyst for CO2 chemical conversion under mild conditions. Green Energy&Environment, 2021, 6(1): 66-74. doi: 10.1016/j.gee.2019.12.005

Novel HBD-Containing Zn (dobdc) (datz) as efficiently heterogeneous catalyst for CO2 chemical conversion under mild conditions

doi: 10.1016/j.gee.2019.12.005
  • A novel Zn-based metal–organic framework Zn (dobdc) (datz) [Zn2(H2dobdc) (datz)2·1.5DMF] with plentiful hydrogen bond donors (HBD) groups was facilely synthesized from mixed ligands. The dual activation of metal Zn sites and HBD groups for epoxides by forming Zn–O adduct and hydrogen bonds facilitated the ring-opening of epoxide substrate, which is critical for the subsequent CO2 fixation. Also, the existence of micropores and N-rich units in Zn (dobdc) (datz) afforded affinity towards CO2, which is beneficial to further improvement on catalytic CO2 conversion performance. Satisfactorily, Zn (dobdc) (datz)/Bu4NBr system was proved efficient heterogeneous catalyst for the CO2 cycloaddition with epoxides, and 98% propylene carbonate yield was obtained under mild conditions (80 °C, 1.5 MPa and solvent-free). In addition, Zn (dobdc) (datz)/Bu4NBr exhibited remarkable versatility to different epoxides and could be completely recycled over six runs with high catalytic activity. The highly stable, easily recycle and solvent-free Zn-based MOF reported here displays eco-friendly and efficient performance to CO2 conversion.

     

  • loading
  • [1]
    Patel, P., Parmar, B., Kureshy, R. I., Khan, N. U., Suresh, E. Efficient Solvent-Free Carbon Dioxide Fixation Reactions with Epoxides Under Mild Conditions by Mixed-Ligand Zinc(II) Metal-Organic Frameworks. ChemCatChem 2018, 10(11), 2401-2408.
    [2]
    Lin, S., Diercks, C. S., Zhang, Y. B., Kornienko, N., Nichols, E. M., Zhao, Y., Paris, A. R., Kim, D., Yang, P., Yaghi, O. M., Chang, C. J. Covalent Organic Frameworks Comprising Cobalt Porphyrins for Catalytic CO2 Reduction in Water. Science 2015, 349(6253), 1208-1213.
    [3]
    Puthiaraj, P., Ravi, S., Yu, K., Ahn, W. S. CO2 Adsorption and Conversion into Cyclic Carbonates over a Porous ZnBr2-Grafted N-Heterocyclic Carbene-based Aromatic Polymer. Appl. Catal. B: Environ. 2019, 25, 195-205.
    [4]
    Leonard, G. L. M., Pirard, S. L., Belet, A., Grignard, B., Detrembleur, C., Jerome, C., Heinrichs, B. Optimizing Support Properties of Heterogeneous Catalysts for the Coupling of Carbon Dioxide with Epoxides. Chem. Eng. J. 2019, 371, 719-729.
    [5]
    Li, Y. X., Zhang, X., Xu, P., Jiang, Z. M., Sun, J. M. The Design of a Novel and Resistant Zn(PZDC)(ATZ) MOF Catalyst for the Chemical Fixation of CO2 under Solvent-Free Conditions. Inorg. Chem. Front. 2019, 6(1), 317-325.
    [6]
    Xu, B. H., Wang, J. Q., Sun, J., Huang, Y., Zhang, J. P., Zhang, X. P., Zhang, S. J. Fixation of CO2 into Cyclic Carbonates Catalyzed by Ionic Liquids: A Multi-Scale Approach. Green Chem. 2015, 17(1), 108-122.
    [7]
    Song, H. B., Wang, Y. J., Xiao, M., Liu, L., Liu, Y. L., Liu, X. F., Gai, H. J. Design of Novel Poly(Ionic Liquids) for the Conversion of CO2 to Cyclic Carbonates under Mild Conditions without Solvent. ACS Sustainable. Chem. Eng. 2019, 10(7), 9489-9497.
    [8]
    Li, J. W., Fan, Y. M., Ren, Y. W., Liao, J. H., Qi, C. R., Jiang, H. F. Development of Isostructural Porphyrin-Salen Chiral Metal-Organic Frameworks Through Postsynthetic Metalation Based on Single-Crystal to Single-Crystal Transformation. Inorg. Chem. 2018, 57, 1203-1212.
    [9]
    Epp, K., Semrau, A. L., Cokoja, M., Fischer, R. A. Dual Site Lewis-Acid Metal-Organic Framework Catalysts for CO2 Fixation: Counteracting Effects of Node Connectivity, Defects and Linker Metalation. ChemCatChem 2018, 10(16), 3506-3512.
    [10]
    Li, L. H., Feng, X. L., Cui, X. H., Ma, Y. X., Ding, S. Y., Wang, W. Salen-Based Covalent Organic Framework. J. Am. Chem. Soc. 2017, 139, 6042-6045.
    [11]
    Li, J. W., Ren, Y. W., Yue, C. L., Fan, Y. M., Qi, C. R., Jiang, H. F. Highly Stable Chiral Zirconium-Metallosalen Frameworks for CO2 Conversion and Asymmetric C-H Azidation. ACS Appl. Mater. Interfaces. 2018, 10(42), 36047-36057.
    [12]
    North, M., Pasquale, R., Young, C. Synthesis of Cyclic Carbonates from Epoxides and CO2. Green Chem. 2010, 12(9), 1514-1539.
    [13]
    Gao, C. Y., Yang, Y., Liu, J., Sun, Z. M. A Ni(II)-Cluster-Based MOF as an Efficient Heterogeneous Catalyst for the Chemical Transformation of CO2. Dalton Trans. 2019, 48(4), 1246-1250.
    [14]
    Parmar, B., Patel, P., Pillai, R. S., Kureshy, R. I., Noor-ul, H. K., Suresh, E. Efficient Catalytic Conversion of Terminal/Internal Epoxides to Cyclic Carbonates by Porous Co(II) MOF under Ambient Conditions: Structure-Property Correlation and Computational Studies. J. Mater. Chem. A. 2019, 7(6), 2884-2894.
    [15]
    Gao W. Y., Chen Y., Niu Y. H., Williams, K., Cash, L., Perez, P. J., Wojtas L., Cai J. F., Chen Y. S., Ma, S. Q. Crystal Engineering of an nbo Topology Metal-Organic Framework for Chemical Fixation of CO2 under Ambient Conditions. Angew. Chem. Int. Ed. 2014, 53(10), 2615-2619.
    [16]
    Sun, Q., Dai, Z. F., Meng, X. J., Xiao, F. S. Porous Polymer Catalysts with Hierarchical Structures. Chem. Soc. Rev. 2015, 44(17), 6018-6034.
    [17]
    Yang, L. L., Yu, L., Diao, G. Q., Sun, M., Cheng, G., Chen, S. Y. Zeolitic Imidazolate Framework-68 as an Efficient Heterogeneous Catalyst for Chemical Fixation of Carbon Dioxide. J. Mol. Catal. A-Chem. 2014, 392, 278-283.
    [18]
    Jiang, Z. R., Wang, H. W., Hu, Y. L., Lu, J. L., Jiang, H. L. Polar Group and Defect Engineering in a Metal-Organic Framework: Synergistic Promotion of Carbon Dioxide Sorption and Conversion. ChemSusChem 2015, 8(5), 878-885.
    [19]
    Martin, C., Fiorani, G., Kleij, A. W. Recent Advances in the Catalytic Preparation of Cyclic Organic Carbonates. ACS Catal. 2015, 5(2), 1353-1370.
    [20]
    Liu, M. S., Wang, X., Jiang, Y. C, Sun, J. M., Arai, M. Hydrogen Bond Activation Strategy for Cyclic Carbonates Synthesis from Epoxides and CO2: Current State-of-the Art of Catalyst Development and Reaction Analysis. Catal. Rev. 2018, 2, 214-269.
    [21]
    He, H. M., Sun, Q., Gao, W. Y., Perman, J. A., Sun, F. X., Zhu, G. S., Aguila B., Forrest K., Space B., Ma, S. Q. A Stable metal-organic Framework Featuring a Local Buffer Environment for Carbon Dioxide Fixation. Angew. Chem. Int. Ed. 2018, 57(17), 4657-4662.
    [22]
    Lan, J. W., Liu, M. S., Lu, X. Y., Zhang, X., Sun, J. M. Novel 3D Nitrogen-Rich Metal Organic Framework for Highly Efficient CO2 Adsorption and Catalytic Conversion to Cyclic Carbonates under Ambient Temperature. ACS Sustainable. Chem. Eng. 2018, 6(7), 8727-8735.
    [23]
    Wang, X. J., Li, P. Z., Chen, Y. F., Zhang, Q., Zhang, H. C., Chan, X. X., Ganguly, R., Li, Y. X., Jiang, J. W., Zhao, Y. L. A Rationally Designed Nitrogen-Rich Metal-Organic Framework and its Exceptionally High CO2 and H2 Uptake Capability. Sci. Rep. 2013, 3.
    [24]
    CrysAlisPro Version 1.171.35.19; Agilent Technologies Inc.: Santa Clara, CA, USA, 2011
    [25]
    Hao, H. G., Wang, Y. C., Yuan, S. X., Chen, D. M., Li, D. C., Dou, J. M. Two Zn(II)-Based Metal-Organic Frameworks for Selective Detection of Nitroaromatic Explosives and Fe3+ Ion. Inorg. Chem. Commun. 2018, 98, 120-126.
    [26]
    Chouhan, A., Pandey, A., Mayer, P. Synthesis Crystal Structure, Photoluminescence and Photocatalytic Property of a New Three Dimensional Zinc(II) Tetrazole Framework. J. Chem. Sci. 2015, 127(9), 1599-1606.
    [27]
    Chakarova, K., Strauss, I., Mihaylov, M., Drenchev, N., Hadjiivanov, K. Evolution of Acid and Basic Sites in UiO-66 and UiO-66-NH2 Metal-Organic Frameworks: FTIR Study by Probe Molecules. Micropor. Mesopor. Mat. 2019, 281, 110-122.
    [28]
    Zhang, J. Y., Ma, X. L., Wang, Z. X., He, X., Shao, M., Li, M. X. Hydrolysis Controlled Synthetic Strategy and Structural Variation of Hydroxyl-Metal Clusters and Metal-Organic Frameworks Based on Tripodal Ether-Linked 1,3,5-Tris(carboxymethoxy)benzene. Cryst. Growth Des. 2019, 4(19), 2308-2321.
    [29]
    Babu, R., Kathalikkattil, A. C., Roshan, R., Tharun, J., Kim, D. W., Park, D. W. Dual-Porous Metal Organic Framework for Room Temperature CO2 Fixation via Cyclic Carbonate Synthesis. Green Chem. 2016, 18(1), 232-242.
    [30]
    Hu, Y., Kazemian, H., Rohani, S., Huang, Y., Song, Y. In Situ High Pressure Study of ZIF-8 by FTIR Spectroscopy. Chem. Commun. 2011, 47(47), 12694-12696.
    [31]
    Henke, S., Schneemann, A., Wütscher, A., Fischer, R. A. Directing the Breathing Behavior of Pillared-Layered Metal-Organic Frameworks via a Systematic Library of Functionalized Linkers Bearing Flexible Substituents. J. Am. Chem. Soc. 2012, 134(22), 9464-9474.
    [32]
    Zhou, H. F., Liu, B., Hou, L., Zhang, W. Y., Wang, Y. Y. Rational Construction of a Stable Zn4O-Based MOF for Highly Efficient CO2 Capture and Conversion. Chem. Commun. 2018, 54(5), 456-459.
    [33]
    He H. M., Perman J. A., Zhu G. S., Ma S. Q. Metal-organic Frameworks for CO2 Chemical Transformations. Small 2016, 12 (46), 6309-6324.
    [34]
    Aguila, B., Sun, Q., Wang, X. L, O'Rourke, E., Al-Enizi, A. M., Nafady, A., Ma, S. Q. Lower Activation Energy for Catalytic Reactions through Host-Guest Cooperation within Metal-Organic Frameworks. Angew. Chem. Int. Ed. 2018, 57(32), 10107-10111.
    [35]
    Roshan, K. R., Kathalikkattil, A. C., Tharun, J., Kim, D. W., Won, Y. S., Park, D. W. Amino Acid/KI as Multi-Functional Synergistic Catalysts for Cyclic Carbonate Synthesis from CO2 under Mild Reaction Conditions: a DFT Corroborated Study. Dalton Trans. 2014, 43(5), 2023-2031.
    [36]
    Song, L. L., Chen, C., Chen, X. B., Zhang, N. Isomorphic MOFs Functionalized by Free-Standing Acylamide and Organic Groups Serving as Self-Supported Catalysts for the CO2 Cycloaddition Reaction. New J. Chem. 2016, 40(3), 2904-2909.
    [37]
    Jeong, G. S., Kathalikkattil, A. C., Babu, R., Chung, Y. G., Park, D. W. Cycloaddition of CO2 with Epoxides by Using an Amino-Acid-Based Cu(II)-Tryptophan MOF Catalyst. Chinese J. Catal. 2018, 39(1), 63-70.
    [38]
    Patel, P.; Parmar, B.; Kureshy, R. I.; Noor-ul, H. K.; Suresh, E. Amine-Functionalized Zn (II) MOF as an Efficient Multifunctional Catalyst for CO2 Utilization and Sulfoxidation Reaction. Dalton Trans. 2018, 47(24), 8041-8051.
    [39]
    Li, Y. H., Wang, S. L., Su, Y. C., Ko, B. T., Tsai, C. Y., Lin, C. H. Microporous 2D Indium Metal-Organic Frameworks for Selective CO2 Capture and Their Application in the Catalytic CO2-Cycloaddition of Epoxides. Dalton Trans. 2018, 47(28), 9474-9481.
    [40]
    Ugale, B., Kumar, S., Dhilip Kumar, T. J., Nagaraja, C. M. Environmentally Friendly, Co-catalyst-Free Chemical Fixation of CO2 at Mild Conditions Using Dual-Walled Nitrogen-Rich Three-Dimensional Porous Metal-Organic Frameworks. Inorg. Chem. 2019, 6(58), 3925-3936.
    [41]
    Maina, J. W., Pozo-Gonzalo, C., Kong, L., Schutz, J., Hill, M., Dumee, L. F. Metal Organic Framework Based Catalysts for CO2 Conversion. Mater. Horiz. 2017, 4(3), 345-361.
    [42]
    Fan, Y., Li, X., Gao, K., Liu, Y., Meng, X., Wu, J., Hou, H. Co(II)-Cluster-Based Metal-Organic Frameworks as Efficient Heterogeneous Catalysts for Selective Oxidation of Arylalkanes. CrystEngComm 2019, 21(10), 1666-1673.
    [43]
    Morokuma, K. Why do Molecules interact? The Origin of Electron Donor-Acceptor Complexes, Hydrogen Bonding and Proton Affinity. Accounts Chem. Res. 1977, 10(8), 294-300.
    [44]
    Maity, K., Karan, C. K., Biradha, K. Porous Metal-Organic Polyhedral Framework Containing Cuboctahedron Cages as SBUs with High Affinity for H2 and CO2 Sorption: A Heterogeneous Catalyst for Chemical Fixation of CO2. Chem-Eur. J. 2018, 24(43), 10988-10993.
    [45]
    Goettmann, F., Thomas, A., Antonietti, M. Metal-Free Activation of CO2 by Mesoporous Graphitic Carbon Nitride. Angew. Chem. Int. Ed. 2007, 46(15), 2717-2720.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (131) PDF downloads(15) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return