Citation: | Jianwen Lan, Ye Qu, Ping Xu, Jianmin Sun. Novel HBD-Containing Zn (dobdc) (datz) as efficiently heterogeneous catalyst for CO2 chemical conversion under mild conditions. Green Energy&Environment, 2021, 6(1): 66-74. doi: 10.1016/j.gee.2019.12.005 |
[1] |
Patel, P., Parmar, B., Kureshy, R. I., Khan, N. U., Suresh, E. Efficient Solvent-Free Carbon Dioxide Fixation Reactions with Epoxides Under Mild Conditions by Mixed-Ligand Zinc(II) Metal-Organic Frameworks. ChemCatChem 2018, 10(11), 2401-2408.
|
[2] |
Lin, S., Diercks, C. S., Zhang, Y. B., Kornienko, N., Nichols, E. M., Zhao, Y., Paris, A. R., Kim, D., Yang, P., Yaghi, O. M., Chang, C. J. Covalent Organic Frameworks Comprising Cobalt Porphyrins for Catalytic CO2 Reduction in Water. Science 2015, 349(6253), 1208-1213.
|
[3] |
Puthiaraj, P., Ravi, S., Yu, K., Ahn, W. S. CO2 Adsorption and Conversion into Cyclic Carbonates over a Porous ZnBr2-Grafted N-Heterocyclic Carbene-based Aromatic Polymer. Appl. Catal. B: Environ. 2019, 25, 195-205.
|
[4] |
Leonard, G. L. M., Pirard, S. L., Belet, A., Grignard, B., Detrembleur, C., Jerome, C., Heinrichs, B. Optimizing Support Properties of Heterogeneous Catalysts for the Coupling of Carbon Dioxide with Epoxides. Chem. Eng. J. 2019, 371, 719-729.
|
[5] |
Li, Y. X., Zhang, X., Xu, P., Jiang, Z. M., Sun, J. M. The Design of a Novel and Resistant Zn(PZDC)(ATZ) MOF Catalyst for the Chemical Fixation of CO2 under Solvent-Free Conditions. Inorg. Chem. Front. 2019, 6(1), 317-325.
|
[6] |
Xu, B. H., Wang, J. Q., Sun, J., Huang, Y., Zhang, J. P., Zhang, X. P., Zhang, S. J. Fixation of CO2 into Cyclic Carbonates Catalyzed by Ionic Liquids: A Multi-Scale Approach. Green Chem. 2015, 17(1), 108-122.
|
[7] |
Song, H. B., Wang, Y. J., Xiao, M., Liu, L., Liu, Y. L., Liu, X. F., Gai, H. J. Design of Novel Poly(Ionic Liquids) for the Conversion of CO2 to Cyclic Carbonates under Mild Conditions without Solvent. ACS Sustainable. Chem. Eng. 2019, 10(7), 9489-9497.
|
[8] |
Li, J. W., Fan, Y. M., Ren, Y. W., Liao, J. H., Qi, C. R., Jiang, H. F. Development of Isostructural Porphyrin-Salen Chiral Metal-Organic Frameworks Through Postsynthetic Metalation Based on Single-Crystal to Single-Crystal Transformation. Inorg. Chem. 2018, 57, 1203-1212.
|
[9] |
Epp, K., Semrau, A. L., Cokoja, M., Fischer, R. A. Dual Site Lewis-Acid Metal-Organic Framework Catalysts for CO2 Fixation: Counteracting Effects of Node Connectivity, Defects and Linker Metalation. ChemCatChem 2018, 10(16), 3506-3512.
|
[10] |
Li, L. H., Feng, X. L., Cui, X. H., Ma, Y. X., Ding, S. Y., Wang, W. Salen-Based Covalent Organic Framework. J. Am. Chem. Soc. 2017, 139, 6042-6045.
|
[11] |
Li, J. W., Ren, Y. W., Yue, C. L., Fan, Y. M., Qi, C. R., Jiang, H. F. Highly Stable Chiral Zirconium-Metallosalen Frameworks for CO2 Conversion and Asymmetric C-H Azidation. ACS Appl. Mater. Interfaces. 2018, 10(42), 36047-36057.
|
[12] |
North, M., Pasquale, R., Young, C. Synthesis of Cyclic Carbonates from Epoxides and CO2. Green Chem. 2010, 12(9), 1514-1539.
|
[13] |
Gao, C. Y., Yang, Y., Liu, J., Sun, Z. M. A Ni(II)-Cluster-Based MOF as an Efficient Heterogeneous Catalyst for the Chemical Transformation of CO2. Dalton Trans. 2019, 48(4), 1246-1250.
|
[14] |
Parmar, B., Patel, P., Pillai, R. S., Kureshy, R. I., Noor-ul, H. K., Suresh, E. Efficient Catalytic Conversion of Terminal/Internal Epoxides to Cyclic Carbonates by Porous Co(II) MOF under Ambient Conditions: Structure-Property Correlation and Computational Studies. J. Mater. Chem. A. 2019, 7(6), 2884-2894.
|
[15] |
Gao W. Y., Chen Y., Niu Y. H., Williams, K., Cash, L., Perez, P. J., Wojtas L., Cai J. F., Chen Y. S., Ma, S. Q. Crystal Engineering of an nbo Topology Metal-Organic Framework for Chemical Fixation of CO2 under Ambient Conditions. Angew. Chem. Int. Ed. 2014, 53(10), 2615-2619.
|
[16] |
Sun, Q., Dai, Z. F., Meng, X. J., Xiao, F. S. Porous Polymer Catalysts with Hierarchical Structures. Chem. Soc. Rev. 2015, 44(17), 6018-6034.
|
[17] |
Yang, L. L., Yu, L., Diao, G. Q., Sun, M., Cheng, G., Chen, S. Y. Zeolitic Imidazolate Framework-68 as an Efficient Heterogeneous Catalyst for Chemical Fixation of Carbon Dioxide. J. Mol. Catal. A-Chem. 2014, 392, 278-283.
|
[18] |
Jiang, Z. R., Wang, H. W., Hu, Y. L., Lu, J. L., Jiang, H. L. Polar Group and Defect Engineering in a Metal-Organic Framework: Synergistic Promotion of Carbon Dioxide Sorption and Conversion. ChemSusChem 2015, 8(5), 878-885.
|
[19] |
Martin, C., Fiorani, G., Kleij, A. W. Recent Advances in the Catalytic Preparation of Cyclic Organic Carbonates. ACS Catal. 2015, 5(2), 1353-1370.
|
[20] |
Liu, M. S., Wang, X., Jiang, Y. C, Sun, J. M., Arai, M. Hydrogen Bond Activation Strategy for Cyclic Carbonates Synthesis from Epoxides and CO2: Current State-of-the Art of Catalyst Development and Reaction Analysis. Catal. Rev. 2018, 2, 214-269.
|
[21] |
He, H. M., Sun, Q., Gao, W. Y., Perman, J. A., Sun, F. X., Zhu, G. S., Aguila B., Forrest K., Space B., Ma, S. Q. A Stable metal-organic Framework Featuring a Local Buffer Environment for Carbon Dioxide Fixation. Angew. Chem. Int. Ed. 2018, 57(17), 4657-4662.
|
[22] |
Lan, J. W., Liu, M. S., Lu, X. Y., Zhang, X., Sun, J. M. Novel 3D Nitrogen-Rich Metal Organic Framework for Highly Efficient CO2 Adsorption and Catalytic Conversion to Cyclic Carbonates under Ambient Temperature. ACS Sustainable. Chem. Eng. 2018, 6(7), 8727-8735.
|
[23] |
Wang, X. J., Li, P. Z., Chen, Y. F., Zhang, Q., Zhang, H. C., Chan, X. X., Ganguly, R., Li, Y. X., Jiang, J. W., Zhao, Y. L. A Rationally Designed Nitrogen-Rich Metal-Organic Framework and its Exceptionally High CO2 and H2 Uptake Capability. Sci. Rep. 2013, 3.
|
[24] |
CrysAlisPro Version 1.171.35.19; Agilent Technologies Inc.: Santa Clara, CA, USA, 2011
|
[25] |
Hao, H. G., Wang, Y. C., Yuan, S. X., Chen, D. M., Li, D. C., Dou, J. M. Two Zn(II)-Based Metal-Organic Frameworks for Selective Detection of Nitroaromatic Explosives and Fe3+ Ion. Inorg. Chem. Commun. 2018, 98, 120-126.
|
[26] |
Chouhan, A., Pandey, A., Mayer, P. Synthesis Crystal Structure, Photoluminescence and Photocatalytic Property of a New Three Dimensional Zinc(II) Tetrazole Framework. J. Chem. Sci. 2015, 127(9), 1599-1606.
|
[27] |
Chakarova, K., Strauss, I., Mihaylov, M., Drenchev, N., Hadjiivanov, K. Evolution of Acid and Basic Sites in UiO-66 and UiO-66-NH2 Metal-Organic Frameworks: FTIR Study by Probe Molecules. Micropor. Mesopor. Mat. 2019, 281, 110-122.
|
[28] |
Zhang, J. Y., Ma, X. L., Wang, Z. X., He, X., Shao, M., Li, M. X. Hydrolysis Controlled Synthetic Strategy and Structural Variation of Hydroxyl-Metal Clusters and Metal-Organic Frameworks Based on Tripodal Ether-Linked 1,3,5-Tris(carboxymethoxy)benzene. Cryst. Growth Des. 2019, 4(19), 2308-2321.
|
[29] |
Babu, R., Kathalikkattil, A. C., Roshan, R., Tharun, J., Kim, D. W., Park, D. W. Dual-Porous Metal Organic Framework for Room Temperature CO2 Fixation via Cyclic Carbonate Synthesis. Green Chem. 2016, 18(1), 232-242.
|
[30] |
Hu, Y., Kazemian, H., Rohani, S., Huang, Y., Song, Y. In Situ High Pressure Study of ZIF-8 by FTIR Spectroscopy. Chem. Commun. 2011, 47(47), 12694-12696.
|
[31] |
Henke, S., Schneemann, A., Wütscher, A., Fischer, R. A. Directing the Breathing Behavior of Pillared-Layered Metal-Organic Frameworks via a Systematic Library of Functionalized Linkers Bearing Flexible Substituents. J. Am. Chem. Soc. 2012, 134(22), 9464-9474.
|
[32] |
Zhou, H. F., Liu, B., Hou, L., Zhang, W. Y., Wang, Y. Y. Rational Construction of a Stable Zn4O-Based MOF for Highly Efficient CO2 Capture and Conversion. Chem. Commun. 2018, 54(5), 456-459.
|
[33] |
He H. M., Perman J. A., Zhu G. S., Ma S. Q. Metal-organic Frameworks for CO2 Chemical Transformations. Small 2016, 12 (46), 6309-6324.
|
[34] |
Aguila, B., Sun, Q., Wang, X. L, O'Rourke, E., Al-Enizi, A. M., Nafady, A., Ma, S. Q. Lower Activation Energy for Catalytic Reactions through Host-Guest Cooperation within Metal-Organic Frameworks. Angew. Chem. Int. Ed. 2018, 57(32), 10107-10111.
|
[35] |
Roshan, K. R., Kathalikkattil, A. C., Tharun, J., Kim, D. W., Won, Y. S., Park, D. W. Amino Acid/KI as Multi-Functional Synergistic Catalysts for Cyclic Carbonate Synthesis from CO2 under Mild Reaction Conditions: a DFT Corroborated Study. Dalton Trans. 2014, 43(5), 2023-2031.
|
[36] |
Song, L. L., Chen, C., Chen, X. B., Zhang, N. Isomorphic MOFs Functionalized by Free-Standing Acylamide and Organic Groups Serving as Self-Supported Catalysts for the CO2 Cycloaddition Reaction. New J. Chem. 2016, 40(3), 2904-2909.
|
[37] |
Jeong, G. S., Kathalikkattil, A. C., Babu, R., Chung, Y. G., Park, D. W. Cycloaddition of CO2 with Epoxides by Using an Amino-Acid-Based Cu(II)-Tryptophan MOF Catalyst. Chinese J. Catal. 2018, 39(1), 63-70.
|
[38] |
Patel, P.; Parmar, B.; Kureshy, R. I.; Noor-ul, H. K.; Suresh, E. Amine-Functionalized Zn (II) MOF as an Efficient Multifunctional Catalyst for CO2 Utilization and Sulfoxidation Reaction. Dalton Trans. 2018, 47(24), 8041-8051.
|
[39] |
Li, Y. H., Wang, S. L., Su, Y. C., Ko, B. T., Tsai, C. Y., Lin, C. H. Microporous 2D Indium Metal-Organic Frameworks for Selective CO2 Capture and Their Application in the Catalytic CO2-Cycloaddition of Epoxides. Dalton Trans. 2018, 47(28), 9474-9481.
|
[40] |
Ugale, B., Kumar, S., Dhilip Kumar, T. J., Nagaraja, C. M. Environmentally Friendly, Co-catalyst-Free Chemical Fixation of CO2 at Mild Conditions Using Dual-Walled Nitrogen-Rich Three-Dimensional Porous Metal-Organic Frameworks. Inorg. Chem. 2019, 6(58), 3925-3936.
|
[41] |
Maina, J. W., Pozo-Gonzalo, C., Kong, L., Schutz, J., Hill, M., Dumee, L. F. Metal Organic Framework Based Catalysts for CO2 Conversion. Mater. Horiz. 2017, 4(3), 345-361.
|
[42] |
Fan, Y., Li, X., Gao, K., Liu, Y., Meng, X., Wu, J., Hou, H. Co(II)-Cluster-Based Metal-Organic Frameworks as Efficient Heterogeneous Catalysts for Selective Oxidation of Arylalkanes. CrystEngComm 2019, 21(10), 1666-1673.
|
[43] |
Morokuma, K. Why do Molecules interact? The Origin of Electron Donor-Acceptor Complexes, Hydrogen Bonding and Proton Affinity. Accounts Chem. Res. 1977, 10(8), 294-300.
|
[44] |
Maity, K., Karan, C. K., Biradha, K. Porous Metal-Organic Polyhedral Framework Containing Cuboctahedron Cages as SBUs with High Affinity for H2 and CO2 Sorption: A Heterogeneous Catalyst for Chemical Fixation of CO2. Chem-Eur. J. 2018, 24(43), 10988-10993.
|
[45] |
Goettmann, F., Thomas, A., Antonietti, M. Metal-Free Activation of CO2 by Mesoporous Graphitic Carbon Nitride. Angew. Chem. Int. Ed. 2007, 46(15), 2717-2720.
|
1. | Zhang, H., Duan, X., Han, M. et al. Experimental and theoretical investigations of zwitterionic hypercrosslinked polymers as robust catalysts for CO2 fixation under cocatalyst- and solvent-free conditions. Separation and Purification Technology, 2025, 354: 128817. doi:10.1016/j.seppur.2024.128817 | |
2. | Li, F., Yun, S., Gui, L. et al. Hydrazino-containing Zr-MOF for enhanced Lewis acid-base catalysis of CO2 fixation into cyclocarbonate. Journal of Environmental Chemical Engineering, 2024, 12(6): 114311. doi:10.1016/j.jece.2024.114311 | |
3. | Wang, H., Gao, Z., Sun, J. The synthesis of amide bond by a simple one-step method to connect ionic liquid and MIL-101-NH2 firmly for efficient CO2 cycloaddition. Separation and Purification Technology, 2024, 344: 127061. doi:10.1016/j.seppur.2024.127061 | |
4. | Zhou, Y., Shao, S., Han, X. et al. The Flower-Shaped Co (II) and Cu (II) Phthalocyanine Polymers as Highly Efficient and Stable Catalysts for Chemical Fixation of CO2 to Cyclic Carbonate. C-Journal of Carbon Research, 2024, 10(3): 74. doi:10.3390/c10030074 | |
5. | Xiong, W., Zhang, X., Hu, X. et al. Self-separation ionic liquid catalyst for the highly effective conversion of H2S by α, β-unsaturated carboxylate esters under mild conditions. Green Energy and Environment, 2024, 9(9): 1440-1448. doi:10.1016/j.gee.2023.03.001 | |
6. | Nam, H.Y., Lee, G., Jhung, S.H. Selective CO2 adsorption over a Zr-based metal–organic framework functionalized with tris(2-aminoethyl)amine. Chemical Engineering Journal, 2024, 494: 153072. doi:10.1016/j.cej.2024.153072 | |
7. | Huang, T.-T., Xu, Y.-P., Bai, Z.-L. et al. Boosting the catalytic activity via an acid-base synergistic effect for direct conversion of CO2 and methanol to dimethyl carbonate. New Journal of Chemistry, 2024, 48(33): 14727-14735. doi:10.1039/d4nj01567c | |
8. | Jeong, S.-M., Cho, K.H., Lee, S.-K. et al. Carbon Dioxide Capture in a Carbonate-Pillared Ultramicroporous Metal-Organic Framework. ACS Sustainable Chemistry and Engineering, 2024, 12(21): 8165-8173. doi:10.1021/acssuschemeng.4c01172 | |
9. | Liu, X., Li, N., Zhang, Y. et al. Synthesis of PEI Grafted Poly (Ionic Liquid)s: Optimization and Kinetics Modeling of Effective CO2 Fixation Reactions. ChemistrySelect, 2024, 9(15): e202303765. doi:10.1002/slct.202303765 | |
10. | Nasiriani, T., Adabi Nigjeh, N., Shaabani, A. Core-shell magnetic zinc-based molecularly imprinted polymer: a robust heterogeneous catalytic nanoreactor toward the CO2 fixation reaction. Environmental Science: Nano, 2024, 11(4): 1622-1635. doi:10.1039/d3en00554b | |
11. | Liu, W., Huang, Y., Ji, C. et al. Eu3+-Doped Anionic Zinc-Based Organic Framework Ratio Fluorescence Sensing Platform: Supersensitive Visual Identification of Prescription Drugs. ACS Sensors, 2024, 9(2): 759-769. doi:10.1021/acssensors.3c02069 | |
12. | Hui, W., Xu, X.-Y., Wang, H.-J. Task-Specific Ionic Liquids Catalysts Efficiently Catalyze Atmospheric CO2 Gas Mixture to Cyclic Carbonates Under Mild Conditions. Catalysis Letters, 2024, 154(2): 749-759. doi:10.1007/s10562-023-04324-z | |
13. | Zhao, B., Li, C., Hu, T. et al. Nanoporous Pb3-Organic Framework for Catalytic Cycloaddition of CO2 with Epoxides and Knoevenagel Condensation. ACS Applied Nano Materials, 2023, 6(24): 23196-23206. doi:10.1021/acsanm.3c04586 | |
14. | Li, N., Qin, S., Hao, Y. et al. Nanoarchitectonics of polymeric crown-ether analog of Tröger base combined with potassium iodide and acids synergy in fixation of CO2 and epoxides. Molecular Catalysis, 2023, 545: 113241. doi:10.1016/j.mcat.2023.113241 | |
15. | Yoo, D.K., Jhung, S.H. N-formylation of amines with CO2 by using Zr-based metal-organic frameworks: Contribution of defect sites of MOFs to N-formylation. Applied Catalysis A: General, 2023, 659: 119170. doi:10.1016/j.apcata.2023.119170 | |
16. | Zhong, S., Tian, L., Yi, L. et al. Phosphine-based ionic liquids for CO2 chemical fixation: Improving stability and activity by asymmetric flexible steric hindrance. Journal of Environmental Chemical Engineering, 2023, 11(3): 109883. doi:10.1016/j.jece.2023.109883 | |
17. | Podder, J., Patra, B.R., Pattnaik, F. et al. A Review of Carbon Capture and Valorization Technologies. Energies, 2023, 16(6): 2589. doi:10.3390/en16062589 | |
18. | Jiang, B., Liu, J., Yang, G. et al. Efficient conversion of CO2 into cyclic carbonates under atmospheric by halogen and metal-free poly(ionic liquid)s. Chinese Journal of Chemical Engineering, 2023, 55: 202-211. doi:10.1016/j.cjche.2022.05.018 | |
19. | Li, Q., Dai, W., Mao, J. et al. Facile integration of hydroxyl ionic liquid into Cr-MIL-101 as multifunctional heterogeneous catalyst for promoting the efficiency of CO2 conversion. Microporous and Mesoporous Materials, 2023, 350: 112461. doi:10.1016/j.micromeso.2023.112461 | |
20. | Guo, S., Liu, Y., Wang, Y. et al. Interfacial role of Ionic liquids in CO2 electrocatalytic Reduction: A mechanistic investigation. Chemical Engineering Journal, 2023, 457: 141076. doi:10.1016/j.cej.2022.141076 | |
21. | Chen, Y., Yu, J., Yang, Y. et al. A continuous process for cyclic carbonate synthesis from CO2 catalyzed by the ionic liquid in a microreactor system: Reaction kinetics, mass transfer, and process optimization. Chemical Engineering Journal, 2023, 455: 140670. doi:10.1016/j.cej.2022.140670 | |
22. | Ma, P., Ding, M., Rong, W. et al. Acetic acid-assisted polyhydroxy acid modification of a zirconium-based MOF for synergistic CO2fixation. Journal of Environmental Chemical Engineering, 2022, 10(6): 108739. doi:10.1016/j.jece.2022.108739 | |
23. | El-Sheikh, S.M., Sheta, S.M., Salem, S.R. et al. Prostate-Specific Antigen Monitoring Using Nano Zinc(II) Metal–Organic Framework-Based Optical Biosensor. Biosensors, 2022, 12(11): 931. doi:10.3390/bios12110931 | |
24. | Yao, S.Y., Iqbal, A., Abu Bakar, N.H.H. et al. CO2 Cycloaddition to Styrene Oxide Catalysed by ZnBr2 Impregnated Rice Husk Ash Silica: Structural and Kinetics Studies. ChemistrySelect, 2022, 7(40): e202201970. doi:10.1002/slct.202201970 | |
25. | Tapiador, J., Leo, P., Gándara, F. et al. Robust Cu-URJC-8 with mixed ligands for mild CO2cycloaddition reaction. Journal of CO2 Utilization, 2022, 64: 102166. doi:10.1016/j.jcou.2022.102166 | |
26. | Liu, F., Duan, X., Dai, X. et al. Metal-decorated porous organic frameworks with cross-linked pyridyl and triazinyl as efficient platforms for CO2 activation and conversion under mild conditions. Chemical Engineering Journal, 2022, 445: 136687. doi:10.1016/j.cej.2022.136687 | |
27. | Yang, P., Lu, G., Yang, Q. et al. Analyzing acetylene adsorption of metal–organic frameworks based on machine learning. Green Energy and Environment, 2022, 7(5): 1062-1070. doi:10.1016/j.gee.2021.01.006 | |
28. | Wang, S., Jiang, N., Peng, J. et al. Efficient Synthesis of Diphenyl Carbonate from CO2, Phenol, and Carbon Tetrachloride under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2022, 10(38): 12689-12697. doi:10.1021/acssuschemeng.2c03400 | |
29. | Chen, Y., Chen, C., Li, X. et al. Hydroxyl-ionic liquid functionalized metalloporphyrin as an efficient heterogeneous catalyst for cooperative cycloaddition of CO2with epoxides. Journal of CO2 Utilization, 2022, 62: 102107. doi:10.1016/j.jcou.2022.102107 | |
30. | Kong, Y., Lu, C., Wang, J. et al. Molecular Regulation Based on Functional Trimetallic Metal-Organic Frameworks for Efficient Oxygen Evolution Reaction. Inorganic Chemistry, 2022, 61(28): 10934-10941. doi:10.1021/acs.inorgchem.2c01484 | |
31. | Li, H.-J., Zhang, X.-Y., Huang, K. et al. A novel 2D zinc(II)-organic framework for efficient catalytic cycloaddition of CO2 with epoxides. Polyhedron, 2022, 220: 115850. doi:10.1016/j.poly.2022.115850 | |
32. | Liu, F., Du, S., Zhang, W. et al. Construction of zwitterionic porous organic frameworks with multiple active sites for highly efficient CO2 adsorption and synergistic conversion. Chemical Engineering Journal, 2022, 435: 134921. doi:10.1016/j.cej.2022.134921 | |
33. | Jun, H.J., Yoo, D.K., Jhung, S.H. Metal-organic framework (MOF-808) functionalized with ethyleneamines: Selective adsorbent to capture CO2under low pressure. Journal of CO2 Utilization, 2022, 58: 101932. doi:10.1016/j.jcou.2022.101932 | |
34. | Lu, Z., He, J., Guo, B. et al. Efficient homogenous catalysis of CO2 to generate cyclic carbonates by heterogenous and recyclable polypyrazoles. Chinese Journal of Chemical Engineering, 2022, 43: 110-115. doi:10.1016/j.cjche.2022.01.009 | |
35. | Weng, S., Dong, J., Ma, J. et al. Biocompatible anions-derived ionic liquids a sustainable media for CO2 conversion into quinazoline-2, 4(1H, 3H)-diones under additive-free conditions. Journal of CO2 Utilization, 2022, 56: 101841. doi:10.1016/j.jcou.2021.101841 | |
36. | Zhang, J., Zou, M., Li, Q. et al. Thermally activated construction of open metal sites on a Zn-organic framework: An effective strategy to enhance Lewis acid properties and catalytic performance for CO2 cycloaddition reactions. Applied Surface Science, 2022, 572: 151408. doi:10.1016/j.apsusc.2021.151408 | |
37. | Yuan, M., Chen, J., Zhang, H. et al. Host-guest molecular interaction promoted urea electrosynthesis over a precisely designed conductive metal-organic framework. Energy and Environmental Science, 2022. doi:10.1039/d1ee03918k | |
38. | Yoo, D.K., Jhung, S.H. Selective CO2 adsorption at low pressure with a Zr-based UiO-67 metal-organic framework functionalized with aminosilanes. Journal of Materials Chemistry A, 2022. doi:10.1039/d1ta09772e | |
39. | Zhu, Y., Gu, J., Yu, X. et al. The multifunctional design of metal-organic framework by applying linker desymmetrization strategy: Synergistic catalysis for high CO2-epoxide conversion. Inorganic Chemistry Frontiers, 2021, 8(23): 4990-4997. doi:10.1039/d1qi00960e | |
40. | He, L., Zhang, W., Yang, Y. et al. Novel biomass-derived deep eutectic solvents promoted cycloaddition of CO2 with epoxides under mild and additive-free conditions. Journal of CO2 Utilization, 2021, 54: 101750. doi:10.1016/j.jcou.2021.101750 | |
41. | Yoo, D.K., Ahmed, I., Sarker, M. et al. Metal–organic frameworks containing uncoordinated nitrogen: Preparation, modification, and application in adsorption. Materials Today, 2021, 51: 566-585. doi:10.1016/j.mattod.2021.07.021 | |
42. | Musa, S.G., Aljunid Merican, Z.M., Akbarzadeh, O. Study on selected metal-organic framework-based catalysts for cycloaddition reaction of co2 with epoxides: A highly economic solution for carbon capture and utilization. Polymers, 2021, 13(22): 3905. doi:10.3390/polym13223905 | |
43. | Bondarenko, G.N., Ganina, O.G., Lysova, A.A. et al. Cyclic carbonates synthesis from epoxides and CO2 over NIIC-10 metal-organic frameworks. Journal of CO2 Utilization, 2021, 53: 101718. doi:10.1016/j.jcou.2021.101718 |