Guoqing Guo, Haiyang Guo, Feng Wang, Liam John France, Wanxin Yang, Zhihong Mei, Yinghao Yu. Dye-sensitized TiO2@SBA-15 composites: Preparation and their application in photocatalytic desulfurization. Green Energy&Environment, 2020, 5(1): 114-120. doi: 10.1016/j.gee.2019.11.005
Citation: Guoqing Guo, Haiyang Guo, Feng Wang, Liam John France, Wanxin Yang, Zhihong Mei, Yinghao Yu. Dye-sensitized TiO2@SBA-15 composites: Preparation and their application in photocatalytic desulfurization. Green Energy&Environment, 2020, 5(1): 114-120. doi: 10.1016/j.gee.2019.11.005

Dye-sensitized TiO2@SBA-15 composites: Preparation and their application in photocatalytic desulfurization

doi: 10.1016/j.gee.2019.11.005
  • Photocatalytic oxidation desulfurization has become a research hotspot in recent years because of mild reaction conditions, less energy consumption and high selectivity. In this paper, TiO2 was loaded onto SBA-15 molecular sieves and sensitized with organic dyes (2, 9-dichloroquinacridone, DCQ) to extend its spectral response range from ultraviolet light to visible light. The catalyst DCQ-X%TiO2@SBA-15 was characterized by BET measurements, X-ray diffraction, Fourier transform infrared spectroscopy and Ultraviolet–visible diffuse reflection spectra, and then it was applied for photocatalytic oxidation desulfurization of gasoline. The effects of different catalytic systems, TiO2 concentration, catalyst dosage, and different model sulfur compounds on catalytic desulfurization performance were investigated. Experimental results show that DCQ-TiO2@SBA-15 has a better performance than the unsensitized TiO2@SBA-15, and the desulfurization rate can reach up to 96.1% in a reaction time of 90 min.

     

  • loading
  • [1]
    T.V. Choudhary, S. Parrott, B. Johnson, Environ. Sci. Technol. 42 (2008) 1944-1947.
    [2]
    J. Fujiki,E. Furuya, Fuel 164 (2016) 180-185.
    [3]
    X. Chen,S.S. Mao, Chem. Rev. 107 (2007) 2891-2959.
    [4]
    V. Chandra Srivastava, RSC Adv.. 2 (2012) 759-783.
    [5]
    N. Savage,M.S. Diallo, J. Nanoparticle Res. 7 (2005) 331-342.
    [6]
    M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, Renew. Sustain. Energy Rev. 11 (2007) 401-425.
    [7]
    T.I. Nkambule, R.W. Krause, B.B. Mamba, J. Haarhoff, Phys. Chem. Earth 34 (2009) 812-818.
    [8]
    K. Yu, S. Yang, H. He, C. Sun, C. Gu,Y. Ju, J. Phys. Chem. A 113 (2009) 10024-10032.
    [9]
    W. Tang, Q. Wang, X. Zeng, X. Chen, J. Solid State Electrochem. 16 (2011) 1429-1445.
    [10]
    J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114 (2014) 9919-9986.
    [11]
    J.C. Yu, W.K. Ho, J.G. Yu, H. Yip, P.K. Wong, J.C. Zhao, Environ. Sci. Technol. 39 (2005) 1175-1179.
    [12]
    J. Chao, Z. Xie, X. Duan, Y. Dong, Z. Wang, J. Xu, B. Liang, B. Shan, J. Ye, D. Chen, G. Shen, CrystEngComm 14 (2012) 3163.
    [13]
    J. Di, S. Li, Z. Zhao, Y. Huang, Y. Jia,H. Zheng, Chem. Eng. J. 281 (2015) 60-68.
    [14]
    L. Huang, Y. Yu, C. Fu, H. Guo,X. Li, RSC Adv.. 7 (2017) 32120-32125.
    [15]
    J. Yang, J. Zhang, L. Zhu, S. Chen, Y. Zhang, Y. Tang, Y. Zhu,Y. Li, J. Hazard Mater. 137 (2006) 952-958.
    [16]
    Y.J. Acosta-Silva, R. Nava, V. Hernandez-Morales, S.A. Macias-Sanchez, M.L. Gomez-Herrera,B. Pawelec, Appl. Catal. B Environ. 110 (2011) 108-117.
    [17]
    H.-H. Tseng, W.W. Lee, M.-C. Wei, B.-S. Huang, M.-C. Hsieh,P.-Y. Cheng, Chem. Eng. J. 210 (2012) 529-538.
    [18]
    W.-T. Qiao, G.-W. Zhou, X.-T. Zhang,T.-D. Li, Mater. Sci. Eng. C 29 (2009) 1498-1502.
    [19]
    G. Wittmann, K. Demeestere, A. Dombi, J. Dewulf,H. Van Langenhove, Appl. Catal. B Environ. 61 (2005) 47-57.
    [20]
    W.Y. Jung, S.H. Baek, J.S. Yang, K.-T. Lim, M.S. Lee, G.-D. Lee, S.S. Park,S.-S. Hong, Catal. Today 131 (2008) 437-443.
    [21]
    W. Yue, C. Randorn, P.S. Attidekou, Z. Su, J.T.S. Irvine, W. Zhou, Adv. Funct. Mater. 19 (2009) 2826-2833.
    [22]
    M. Mazaj, W.J.J. Stevens, N.Z. Logar, A. Ristic, N.N. Tusar, I. Arcon, N. Daneu, V. Meynen, P. Cool, E.F. Vansant,V. Kaucic, Microporous Mesoporous Mater.. 117 (2009) 458-465.
    [23]
    S.K. Das, M.K. Bhunia, A. Bhaumik, J. Solid State Chem. 183 (2010) 1326-1333.
    [24]
    W.Y. Jung, B.H. Noh, S.H. Baek, G.-D. Lee, S.S. Park,S.-S. Hong, React. Kinet. Catal. Lett. 91 (2007) 223-231.
    [25]
    D. Jiang, Y. Xu, D. Wu,Y. Sun, J. Solid State Chem. 181 (2008) 593-602.
    [26]
    H. Ding, H. Sun,Y. Shan, J. Photochem. Photobiol., A 169 (2005) 101-107.
    [27]
    Y. Shiraishi, Y. Taki, T. Hirai,I. Komasawa, Ind. Eng. Chem. Res. 38 (1999) 3310-3318.
    [28]
    M.H. Habibi,H. Vosooghian, J. Photochem. Photobiol., A 174 (2005) 45-52.
    [29]
    Y Shiraishi, T Hirai, I Komasawa, Ind. Eng. Chem. Res. 40 (2001) 293-303.
    [30]
    Y Shiraishi, Y Taki, T Hirai, I Komasawa, Chem. Commun. 23 (1998) 2601-2602.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (123) PDF downloads(19) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return