Citation: | Rouzbeh Ramezani, Renzo Di Felice. Kinetics study of CO2 absorption in potassium carbonate solution promoted by diethylenetriamine. Green Energy&Environment, 2021, 6(1): 83-90. doi: 10.1016/j.gee.2019.11.004 |
[1] |
G. Capannelli, A. Comite, C. Costa, R. Di Felice, Effect of absorbent type and concentration on CO2 capture from a gas stream into a liquid phase, Ind. Eng. Chem. Res. 52 (2013) 13128-13136.
|
[2] |
Zh. Dai, L. Ansaloni, L. Deng, Recent advances in multi-layer composite polymeric membranes for CO2 separation: a review, Green Energy & Environment, 1 (2016) 102-128.
|
[3] |
R. Ramezani, S. Mazinani, R. Di Felice, Experimental study of CO2 absorption in potassium carbonate solution promoted by triethylenetetramine, The Open Chemical Engineering Journal, 12 (2018) 67-79.
|
[4] |
K.H. Smith, T. Harkin, K. Mumford, S. Kentish, A. Qader, C. Anderson, B. Hooper, G.W. Stevens, Outcomes from pilot plant trials of precipitating potassium carbonate solvent absorption for CO2 capture from a brown coal fired power station in Australia, Fuel Processing Technology 155 (2017) 252-260.
|
[5] |
K. Mumford, K. Smith, C. Anderson, Sh. Shen, W. Tao, Y. Suryaputradinata, A. Qader, B. Hooper, R. Innocenzi, S. Kentish, G. Stevens, Post-combustion capture of CO2: results from the solvent absorption capture plant at Hazelwood power station using potassium carbonate solvent, Energy Fuels 26 (2012) 138-146.
|
[6] |
A. Lee, M. Wolf, N. Kromer, K. Mumford, N. Nicholas, S. Kentish, G. Stevens, A study of the vapour-liquid equilibrium of CO2 in mixed solutions of potassium carbonate and potassium glycinate, Int. J. Greenh. Gas Con. 36 (2015) 27-33.
|
[7] |
G. Hu, N. Nicholas, K. Smith, K. Mumford, S. Kentish, G. Stevens, Carbon dioxide absorption into promoted potassium carbonate solutions: A review, Int. J. Greenh. Gas Con. 53 (2016) 28-40.
|
[8] |
R. Bhosale, A. Kumar, F. AlMomani, U. Ghosh, A. AlNouss, J. Scheffe, R. Gupta, CO2 capture using aqueous potassium carbonate promoted by ethylaminoethanol: a kinetic study, Ind. Eng. Chem. Res. 55 (2016) 5238-5246.
|
[9] |
H. Thee, N. Nicholas, K. Smith, G. da Silva, S. Kentish, G. Stevens, A kinetic study of CO2 capture with potassium carbonate solutions promoted with various amino acids: glycine, sarcosine and proline, Int. J. Greenh. Gas Con. 20 (2014) 212-222.
|
[10] |
Sh. Shen, X. Feng, R. Zhao, U. Ghosh, A. Chen, Kinetic study of carbon dioxide absorption with aqueous potassium carbonate promoted by arginine, Chem. Eng. J. 222 (2013) 478-487.
|
[11] |
Y. Kim, J. Choi, S. Nam, Y. Yoon, CO2 absorption capacity using aqueous potassium carbonate with 2-methylpiperazine and piperazine, Journal of Industrial and Engineering Chemistry 18 (2012) 105-110.
|
[12] |
D. Kang, M. Lee, Y. Yoo, J. Park, Absorption characteristics of potassium carbonate-based solutions with rate promoters and corrosion inhibitors, Journal of Material Cycles and Waste Management, 20 (2018) 1562-1573.
|
[13] |
H. Thee, Y. Suryaputradinata, K. Mumford, K. Smith, G. da Silva, S. Kentish, G. Stevens, A kinetic and process modeling study of CO2 capture with MEA-promoted potassium carbonate solutions, Chem. Eng. J. 210 (2012) 271-279.
|
[14] |
A. Hartonoa, E. da Silva, H. Svendsen, Kinetics of carbon dioxide absorption in aqueous solution of diethylenetriamine (DETA), Chem. Eng. Sci. 64 (2009) 3205-3213.
|
[15] |
N. Zhong, H. Liu, X. Luo, M. AL-Marri, A. Benamor, R. Idem, P. Tontiwachwuthikul, Zh. Liang, Reaction kinetics of carbon dioxide (CO2) with diethylenetriamine and 1-amino-2-propanol in non-aqueous solvents using stopped-flow technique, Ind. Eng. Chem. Res. 55 (2016) 7307-7317.
|
[16] |
J. Cullinane, G. Rochelle, Carbon dioxide absorption with aqueous potassium carbonate promoted by piperazine, Chem. Eng. Sci. 59 (2004) 3619-3630.
|
[17] |
Sh. Shen, Ya. Yang, Carbon dioxide absorption into aqueous potassium salt solutions of arginine for post-combustion capture, Energy Fuels 30 (2016) 6585-6596.
|
[18] |
Danckwerts, P. 1970. Gas-Liquid Reactions. McGraw-Hill, New York.
|
[19] |
R. Ramazani, S. Mazinani, R. Di Felice, A comprehensive kinetic and thermodynamic study of CO2 absorption in blends of monoethanolamine and potassium lysinate: Experimental and modeling, Chem. Eng. Sci. 206 (2019) 187-202.
|
[20] |
R. Ramezani, S. Mazinani, R. Di Felice, Potential of different additives to improve performance of potassium carbonate for CO2 absorption, Korean J. Chem. Eng. 35 (2018) 2065-2077.
|
[21] |
R. Ramezani, S. Mazinani, R. Di Felice, Characterization and kinetics of CO2 absorption in potassium carbonate solution promoted by 2-methylpiperazine, Journal of Environmental Chemical Engineering 6 (2018) 3262-3272.
|
[22] |
R. Ramezani, S. Mazinani, R. Di Felice, S. Darvishmanesh, B. Van der Bruggen, Selection of blended absorbents for CO2 capture from flue gas: CO2 solubility, corrosion and absorption rate, Int. J. Greenh. Gas Con. 62 (2017) 61-68.
|
[23] |
R. Ramezani, S. Mazinani, R. Di Felice, B. Van der Bruggen, Experimental and correlation study of corrosion rate, absorption rate and CO2 loading capacity in five blend solutions as new absorbents for CO2 capture, J. Nat. Gas Sci. Eng. 45 (2017) 599-608.
|
[24] |
H. Lia, Y. Moullec, J. Lu, J. Chen, J. Marcos, G. Chen, Solubility and energy analysis for CO2 absorption in piperazine derivatives and their mixtures, Int. J. Greenh. Gas Con. 31 (2014) 25-32.
|
[25] |
P. Chung, A. Soriano, R. Leron, M. Li, Equilibrium solubility of carbon dioxide in the amine solvent system of (triethanolamine+piperazine + water), J. Chem. Thermodynamics 42 (2010) 802-807.
|
[26] |
B. Lu, X. Wang, Y. Xia, N. Liu, S. Li, W. Li, Kinetics of carbon dioxide absorption into mixed aqueous solutions of MEA+[Bmim]BF4 using a double stirred cell, Energy Fuels 27 (2013) 6002-6009.
|
[27] |
G.F. Versteeg, W.P. Swaaij, Solubility and diffusivity of acid gases, CO2, N2O in aqueous alkanolamine solutions, J. Chem. Eng. Data, 33 (1988) 29-34.
|
[28] |
A. Schumpe, The estimation of gas solubilities in salt solutions, Chem. Eng. Sci. 48 (1993) 153-158.
|
[29] |
S. Weisenberger, A. Schumpe, Estimation of gas solubilities in salt solutions at temperatures from 273 to 363 K, AIChE J. 42 (1996) 298-300.
|
[30] |
H. Kierzkowska-Pawlak, A. Chacuk, Chem. Eng. J. 168 (2011) 367-375.
|
[31] |
S. Paul, K. Thomsen, Kinetics of absorption of carbon dioxide into aqueous potassium salt of proline, Int. J. Greenh. Gas Con. 8 (2012) 169-179.
|
[32] |
Sh. Shen, Ya. Yang, Y. Bian, Y. Zhao, Kinetics of CO2 absorption into aqueous basic amino acid salt: potassium salt of lysine solution, Environ. Sci. Technol. 50 (2016) 2054-2063.
|
[33] |
G. Hu, K.H. Smith, L. Liu, S.E. Kentish, G.W. Stevens, Reaction kinetics and mechanism between histidine and carbon dioxide, Chem. Eng. J. 307 (2017) 56-62.
|
[34] |
M. Kim, H. Song, M. Lee, H. Jo, J. Park, Kinetics and steric hindrance effects of carbon dioxide absorption into aqueous potassium alaninate solutions, Ind. Eng. Chem. Res. 51 (2012) 2570-2577.
|
1. | Sakamoto, Y., Nishimura, Y., Mizutani, Y. et al. Continuous CO synthesis from ambient air by integrating direct air capture and direct carbonate reduction using an alkaline CO2-absorbing electrolyte operating at room temperature. Carbon Capture Science and Technology, 2024. doi:10.1016/j.ccst.2024.100225 | |
2. | Liu, H., Wang, Y., Zhu, B. et al. Engineering Dual CO2- and Photothermal-Responsive Membranes for Switchable Double Emulsion Separation. Advanced Materials, 2024, 36(19): 2311013. doi:10.1002/adma.202311013 | |
3. | Dongare, S., Zeeshan, M., Aydogdu, A.S. et al. Reactive capture and electrochemical conversion of CO2 with ionic liquids and deep eutectic solvents. Chemical Society Reviews, 2024. doi:10.1039/d4cs00390j | |
4. | Wang, Z., Han, Z., Liu, G. et al. An investigation on the effects of organic additives on CO2 capture performance of Na2CO3 solution. Journal of Chemical Technology and Biotechnology, 2024, 99(1): 183-194. doi:10.1002/jctb.7522 | |
5. | Bîrgăuanu, I., Lisa, C., Leon, F. et al. MODELING OF EXCESS MOLAR VOLUME FOR BINARY AND TERNARY MIXTURES OF BENZYL ALCOHOL, n-HEXANOL AND WATER. Environmental Engineering and Management Journal, 2023, 22(12): 2157-2164. doi:10.30638/eemj.2023.185 | |
6. | Xu, Z., Wang, T., Wu, J. et al. Mass Transfer Characteristics of CO2and Blended Aqueous Solutions of [C2OHmim][Lys]/MDEA in a Microchannel. Industrial and Engineering Chemistry Research, 2023, 62(22): 8926-8938. doi:10.1021/acs.iecr.2c04407 | |
7. | Zheng, X., Zhang, T., Li, J. et al. Synthesis of 2-Ethyl-3-oxazolidineethanol from Propanal and Diethanolamine: Kinetic and Process Optimization Study. Industrial and Engineering Chemistry Research, 2023, 62(14): 5792-5803. doi:10.1021/acs.iecr.2c04262 | |
8. | Li, Z., Shi, K., Zhai, L. et al. Constructing multiple sites of metal-organic frameworks for efficient adsorption and selective separation of CO2. Separation and Purification Technology, 2023. doi:10.1016/j.seppur.2022.122725 | |
9. | Shi, Q., Wang, K., Wang, M. et al. Efficient Recovery of Dichloromethane from Tail Gas by 1-Alkyl-2-ethylimidazole Ethyl Sulfate and 1-Ethylpyridine Ethyl Sulfate. Industrial and Engineering Chemistry Research, 2022, 61(34): 12699-12709. doi:10.1021/acs.iecr.2c00955 | |
10. | Yuan, B., Zhan, G., Chen, Z. et al. Intrinsic insight of energy-efficiency optimization for CO2 capture by amine-based solvent: effect of mass transfer and solvent regeneration. International Journal of Greenhouse Gas Control, 2022. doi:10.1016/j.ijggc.2022.103673 | |
11. | Kiani, S., Taghizade, A., Ramezani, R. et al. Enhancement of CO2 removal by promoted MDEA solution in a hollow fiber membrane contactor: A numerical and experimental study. Carbon Capture Science and Technology, 2022. doi:10.1016/j.ccst.2022.100028 | |
12. | Harja, M., Tataru-Farmus, R., Hultuana, E.D. et al. Influence of ethylenediamine content over performance of CO2 absorption into potassium carbonate solutions. Environmental Engineering and Management Journal, 2021, 20(4): 507-516. doi:10.30638/EEMJ.2021.050 | |
13. | Ayittey, F.K., Saptoro, A., Kumar, P. et al. Parametric study and optimisation of hot K2CO3-based post-combustion CO2 capture from a coal-fired power plant. Greenhouse Gases: Science and Technology, 2020, 10(3): 631-642. doi:10.1002/ghg.1983 |