Volume 6 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
Rouzbeh Ramezani, Renzo Di Felice. Kinetics study of CO2 absorption in potassium carbonate solution promoted by diethylenetriamine. Green Energy&Environment, 2021, 6(1): 83-90. doi: 10.1016/j.gee.2019.11.004
Citation: Rouzbeh Ramezani, Renzo Di Felice. Kinetics study of CO2 absorption in potassium carbonate solution promoted by diethylenetriamine. Green Energy&Environment, 2021, 6(1): 83-90. doi: 10.1016/j.gee.2019.11.004

Kinetics study of CO2 absorption in potassium carbonate solution promoted by diethylenetriamine

doi: 10.1016/j.gee.2019.11.004
  • In this work, characterization and kinetics of CO2 absorption in potassium carbonate (K2CO3) solution promoted by diethylenetriamine (DETA) were investigated. Kinetics measurements were performed using a stirred cell reactor in the temperature range of 303.15–323.15 K and total concentration up to 2.5 kmol m−3. The density, viscosity, physical solubility, CO2 diffusivity and absorption rate of CO2 in the solution were determined. The reaction kinetics between CO2 and K2CO3 + DETA solution were examined. Pseudo-first order kinetic constants were also predicted by zwitterion mechanism. It was revealed that the addition of small amounts of DETA to K2CO3 results in a significant enhancement in CO2 absorption rate. The reaction order and activation energy were found to be 1.6 and 35.6 kJ mol−1, respectively. In terms of reaction rate constant, DETA showed a better performance compared to the other promoters such as MEA, EAE, proline, arginine, taurine, histidine and alanine.

     

  • loading
  • [1]
    G. Capannelli, A. Comite, C. Costa, R. Di Felice, Effect of absorbent type and concentration on CO2 capture from a gas stream into a liquid phase, Ind. Eng. Chem. Res. 52 (2013) 13128-13136.
    [2]
    Zh. Dai, L. Ansaloni, L. Deng, Recent advances in multi-layer composite polymeric membranes for CO2 separation: a review, Green Energy & Environment, 1 (2016) 102-128.
    [3]
    R. Ramezani, S. Mazinani, R. Di Felice, Experimental study of CO2 absorption in potassium carbonate solution promoted by triethylenetetramine, The Open Chemical Engineering Journal, 12 (2018) 67-79.
    [4]
    K.H. Smith, T. Harkin, K. Mumford, S. Kentish, A. Qader, C. Anderson, B. Hooper, G.W. Stevens, Outcomes from pilot plant trials of precipitating potassium carbonate solvent absorption for CO2 capture from a brown coal fired power station in Australia, Fuel Processing Technology 155 (2017) 252-260.
    [5]
    K. Mumford, K. Smith, C. Anderson, Sh. Shen, W. Tao, Y. Suryaputradinata, A. Qader, B. Hooper, R. Innocenzi, S. Kentish, G. Stevens, Post-combustion capture of CO2: results from the solvent absorption capture plant at Hazelwood power station using potassium carbonate solvent, Energy Fuels 26 (2012) 138-146.
    [6]
    A. Lee, M. Wolf, N. Kromer, K. Mumford, N. Nicholas, S. Kentish, G. Stevens, A study of the vapour-liquid equilibrium of CO2 in mixed solutions of potassium carbonate and potassium glycinate, Int. J. Greenh. Gas Con. 36 (2015) 27-33.
    [7]
    G. Hu, N. Nicholas, K. Smith, K. Mumford, S. Kentish, G. Stevens, Carbon dioxide absorption into promoted potassium carbonate solutions: A review, Int. J. Greenh. Gas Con. 53 (2016) 28-40.
    [8]
    R. Bhosale, A. Kumar, F. AlMomani, U. Ghosh, A. AlNouss, J. Scheffe, R. Gupta, CO2 capture using aqueous potassium carbonate promoted by ethylaminoethanol: a kinetic study, Ind. Eng. Chem. Res. 55 (2016) 5238-5246.
    [9]
    H. Thee, N. Nicholas, K. Smith, G. da Silva, S. Kentish, G. Stevens, A kinetic study of CO2 capture with potassium carbonate solutions promoted with various amino acids: glycine, sarcosine and proline, Int. J. Greenh. Gas Con. 20 (2014) 212-222.
    [10]
    Sh. Shen, X. Feng, R. Zhao, U. Ghosh, A. Chen, Kinetic study of carbon dioxide absorption with aqueous potassium carbonate promoted by arginine, Chem. Eng. J. 222 (2013) 478-487.
    [11]
    Y. Kim, J. Choi, S. Nam, Y. Yoon, CO2 absorption capacity using aqueous potassium carbonate with 2-methylpiperazine and piperazine, Journal of Industrial and Engineering Chemistry 18 (2012) 105-110.
    [12]
    D. Kang, M. Lee, Y. Yoo, J. Park, Absorption characteristics of potassium carbonate-based solutions with rate promoters and corrosion inhibitors, Journal of Material Cycles and Waste Management, 20 (2018) 1562-1573.
    [13]
    H. Thee, Y. Suryaputradinata, K. Mumford, K. Smith, G. da Silva, S. Kentish, G. Stevens, A kinetic and process modeling study of CO2 capture with MEA-promoted potassium carbonate solutions, Chem. Eng. J. 210 (2012) 271-279.
    [14]
    A. Hartonoa, E. da Silva, H. Svendsen, Kinetics of carbon dioxide absorption in aqueous solution of diethylenetriamine (DETA), Chem. Eng. Sci. 64 (2009) 3205-3213.
    [15]
    N. Zhong, H. Liu, X. Luo, M. AL-Marri, A. Benamor, R. Idem, P. Tontiwachwuthikul, Zh. Liang, Reaction kinetics of carbon dioxide (CO2) with diethylenetriamine and 1-amino-2-propanol in non-aqueous solvents using stopped-flow technique, Ind. Eng. Chem. Res. 55 (2016) 7307-7317.
    [16]
    J. Cullinane, G. Rochelle, Carbon dioxide absorption with aqueous potassium carbonate promoted by piperazine, Chem. Eng. Sci. 59 (2004) 3619-3630.
    [17]
    Sh. Shen, Ya. Yang, Carbon dioxide absorption into aqueous potassium salt solutions of arginine for post-combustion capture, Energy Fuels 30 (2016) 6585-6596.
    [18]
    Danckwerts, P. 1970. Gas-Liquid Reactions. McGraw-Hill, New York.
    [19]
    R. Ramazani, S. Mazinani, R. Di Felice, A comprehensive kinetic and thermodynamic study of CO2 absorption in blends of monoethanolamine and potassium lysinate: Experimental and modeling, Chem. Eng. Sci. 206 (2019) 187-202.
    [20]
    R. Ramezani, S. Mazinani, R. Di Felice, Potential of different additives to improve performance of potassium carbonate for CO2 absorption, Korean J. Chem. Eng. 35 (2018) 2065-2077.
    [21]
    R. Ramezani, S. Mazinani, R. Di Felice, Characterization and kinetics of CO2 absorption in potassium carbonate solution promoted by 2-methylpiperazine, Journal of Environmental Chemical Engineering 6 (2018) 3262-3272.
    [22]
    R. Ramezani, S. Mazinani, R. Di Felice, S. Darvishmanesh, B. Van der Bruggen, Selection of blended absorbents for CO2 capture from flue gas: CO2 solubility, corrosion and absorption rate, Int. J. Greenh. Gas Con. 62 (2017) 61-68.
    [23]
    R. Ramezani, S. Mazinani, R. Di Felice, B. Van der Bruggen, Experimental and correlation study of corrosion rate, absorption rate and CO2 loading capacity in five blend solutions as new absorbents for CO2 capture, J. Nat. Gas Sci. Eng. 45 (2017) 599-608.
    [24]
    H. Lia, Y. Moullec, J. Lu, J. Chen, J. Marcos, G. Chen, Solubility and energy analysis for CO2 absorption in piperazine derivatives and their mixtures, Int. J. Greenh. Gas Con. 31 (2014) 25-32.
    [25]
    P. Chung, A. Soriano, R. Leron, M. Li, Equilibrium solubility of carbon dioxide in the amine solvent system of (triethanolamine+piperazine + water), J. Chem. Thermodynamics 42 (2010) 802-807.
    [26]
    B. Lu, X. Wang, Y. Xia, N. Liu, S. Li, W. Li, Kinetics of carbon dioxide absorption into mixed aqueous solutions of MEA+[Bmim]BF4 using a double stirred cell, Energy Fuels 27 (2013) 6002-6009.
    [27]
    G.F. Versteeg, W.P. Swaaij, Solubility and diffusivity of acid gases, CO2, N2O in aqueous alkanolamine solutions, J. Chem. Eng. Data, 33 (1988) 29-34.
    [28]
    A. Schumpe, The estimation of gas solubilities in salt solutions, Chem. Eng. Sci. 48 (1993) 153-158.
    [29]
    S. Weisenberger, A. Schumpe, Estimation of gas solubilities in salt solutions at temperatures from 273 to 363 K, AIChE J. 42 (1996) 298-300.
    [30]
    H. Kierzkowska-Pawlak, A. Chacuk, Chem. Eng. J. 168 (2011) 367-375.
    [31]
    S. Paul, K. Thomsen, Kinetics of absorption of carbon dioxide into aqueous potassium salt of proline, Int. J. Greenh. Gas Con. 8 (2012) 169-179.
    [32]
    Sh. Shen, Ya. Yang, Y. Bian, Y. Zhao, Kinetics of CO2 absorption into aqueous basic amino acid salt: potassium salt of lysine solution, Environ. Sci. Technol. 50 (2016) 2054-2063.
    [33]
    G. Hu, K.H. Smith, L. Liu, S.E. Kentish, G.W. Stevens, Reaction kinetics and mechanism between histidine and carbon dioxide, Chem. Eng. J. 307 (2017) 56-62.
    [34]
    M. Kim, H. Song, M. Lee, H. Jo, J. Park, Kinetics and steric hindrance effects of carbon dioxide absorption into aqueous potassium alaninate solutions, Ind. Eng. Chem. Res. 51 (2012) 2570-2577.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (173) PDF downloads(19) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return