Hao Qin, Yishan Zhou, Qian Zeng, Hongye Cheng, Lifang Chen, Bingjian Zhang, Zhiwen Qi. Efficient Knoevenagel condensation catalyzed by imidazole-based halogen-free deep eutectic solvent at room temperature. Green Energy&Environment, 2020, 5(2): 124-129. doi: 10.1016/j.gee.2019.11.002
Citation: Hao Qin, Yishan Zhou, Qian Zeng, Hongye Cheng, Lifang Chen, Bingjian Zhang, Zhiwen Qi. Efficient Knoevenagel condensation catalyzed by imidazole-based halogen-free deep eutectic solvent at room temperature. Green Energy&Environment, 2020, 5(2): 124-129. doi: 10.1016/j.gee.2019.11.002

Efficient Knoevenagel condensation catalyzed by imidazole-based halogen-free deep eutectic solvent at room temperature

doi: 10.1016/j.gee.2019.11.002
  • For the first time, we employed the halogen-free deep eutectic solvent (DES) into the Knoevenagel condensation between aromatic aldehydes and active methylene compounds at room temperature. The DESs [3Im:PTSA] and [4Im:PTSA] were prepared by imidazole (Im) andp-toluenesulfonic acid (PTSA), which were experimentally screened from a series of organic acids with imidazole. α, β-Unsaturated carbonyl compounds were obtained in good to excellent yields under solvent-free conditions with fast reaction rate. These two DESs can be reused for multiple times with no loss of catalytic activity.

     

  • loading
  • [1]
    L.F. Tietze, Chem. Rev. 96 (1996) 115-136.
    [2]
    F. Santamarta, P. Verdia, E. Tojo, Catal. Commun. 9 (2008) 1779-1781.
    [3]
    L.F. Tietze, N. Rackelmann, Pure. Appl. Chem. 76 (2004) 1967-1983.
    [4]
    G. Kwak, M. Fujiki, Macromolarcules. 37 (2004) 2021-2025.
    [5]
    F. Liang, Y.J. Pu, T. Kurata, J. Kido, Nishide, H. Polymer. 46 (2005) 3767-3775.
    [6]
    J.W. Rumer, M. Levick, S.Y. Dai, S. Rossbauer, Z. Huang, L. Biniek, I. McCulloch, Chem. Commun. 49 (2013) 4465-4467.
    [7]
    P. Leelavathi, S.R. Kumar, J. Mol. Catal. A: Chem. 240 (2004) 99-102.
    [8]
    J.S. Yadav, B.V.S. Reddy, A.K. Basak, B. Visali, A.V. Narsaiah, K. Nagaiah, Eur. J. Org. Chem. 3 (2004) 546-551.
    [9]
    Y. Goa, P. Wu, T.J. Tatsumi, Catal. 224 (2004) 107-114.
    [10]
    Y. Ding, X. Ni, M. Gu, S. Li, H. Huang, Y. Hu, Catal Commun. 64 (2015) 101-104.
    [11]
    D.Z. Xu, Y. Liu, S. Shi, Y. Wang, Green Chem. 12 (2010) 514-517.
    [12]
    P. A. Burate, B. R. Javle, P. H. Desale, A. K. Kinage, Catal. Lett. 149 (2019) 2368-2375.
    [13]
    F. Pandolfi, M. Feroci, I. Chiarotto, Chemistryselect. 3 (2018) 4745-4749.
    [14]
    L. C. Player, B. Chan, P. Turner, A. F. Masters, T. Maschmeyer, Appl. Catal. B-Environ. 223 (2018) 228-233.
    [15]
    Z. Q. Zhou, J. Y. Yuan, R. Yang, Synthetic Commun. 39 (2009) 2001-2007.
    [16]
    O. Paula, R. Zbigniew, G. Marcin, J. Ewa, Pol J. Chem. Technol. 18 (2016) 90-95.
    [17]
    X.P. Zhang, C.S. Li, C. Fu, S.J. Zhang, Ind. Eng. Chem. Res. 47 (2008) 1085-1094.
    [18]
    X.P. Zhang, X.C. Zhang, H.F. Dong, Z.J. Zhao, S.J. Zhang, Y. Huang, Energy Environ. Sci. 5 (2012) 6668-6681.
    [19]
    R. Mancuso, A. Maner, A.M.I. Ziccarelli, C. Pomelli, C. Chiappe, Ca, N Della, B. Gabriele, Molecules. 21 (2016) 897.
    [20]
    S.P. Ventura, L.D. Santos, J.A. Saraiva, J.A.P. Coutinho, Green Chem. 14 (2012) 1620-1625.
    [21]
    Z. Song, T. Zhou, J.N. Zhang, H.Y. Cheng, L.F. Chen, Z.W. Qi, Chem. Eng. Sci. 129 (2015) 69-77.
    [22]
    Z. Song, T. Zhou, Z.W. Qi, K. Sundmacher, ACS Sustain. Chem. Eng. 5 (2017) 3382-3389.
    [23]
    Q. Zeng, H. Qin, H.Y. Cheng, L.F. Chen, Z.W. Qi, Chem. Eng. Sci.: X. 1 (2019) 100001.
    [24]
    L. Qin, J.S. Li, H.Y. Cheng, L.F. Chen, Z.W. Qi, W.K. Yuan, AIChE. J. 63 (2017), 2212-2220.
    [25]
    D.A. Alonso, A. Baeza, R. Chinchilla, G. Guillena, I.M. Pastor, D.J. Ramon, Eur. J. Org. Chem. 4 (2016), 612-632.
    [26]
    E.L. Smith, A.P. Abbott, K.S. Ryder, Chem. Rev. 114 (2014) 11060-11082.
    [27]
    H. Passos, D.J.P. Tavares, A.M. Ferreira, M.G. Freire, J.A.P. Coutinho, ACS Sustain. Chem. Eng. 4 (2016) 2881-2886.
    [28]
    H. Qin, X.T. Hu, J.W. Wang, H.Y. Cheng, L.F. Chen, Z.W. Qi, Green Energy Environ. (2019) https://doi.org/10.1016/j.gee.2019.03.002.
    [29]
    Y. Chen, T.C. Mu, Green Energy Environ. 2 (2019) 95-115.
    [30]
    Y.A. Sonawane, S.B. Phadtare, B.N. Borse, A.R. Jagtap, G.S. Shankarling, Org. Lett. 12 (2010) 1456-1459.
    [31]
    S. Handy, K. Lavender, Tetrahedron. Lett. 54 (2013) 4377-4379.
    [32]
    S. Handy, M. Wright, Tetrahedron. Lett. 55 (2014) 3440-3442.
    [33]
    H. Qin, Z. Song, Q. Zeng, H.Y. Cheng, L.F. Chen, Z.W. Qi, AIChE J. 65 (2019) 675-683.
    [34]
    A.S. Alfred, J. Chem. Educ. 81 (2004) 1661-1664.
    [35]
    J.K. Paul, A.D. Kimberlee, W.T. Mark, D.K. Keith, P.W. Vincent, L.C. Stephen, M.B. Michelle, W.B. Gray, J. Am. Chem. Soc. 115 (1993) 3071-3079.
    [36]
    S. Jensen, New Sci. 32 (1966) 612.
    [37]
    H. Qin, Z. Song, Q. Zeng, H.Y. Cheng, L.F. Chen, Z.W. Qi, AIChE. J. 65 (2019) 675-683.
    [38]
    J. Grasvik, B. Eliasson, J.P. Mikkola, J. Mol. Struct. 1028 (2012) 156-163.
    [39]
    Y. Hou, Y. Gu, S. Zhang, F. Yang, H. Ding, Y. Shan, J. Mol. Liq. 143 (2008) 154-159.
    [40]
    T. Zhekenov, N. Toksanbayev, Z. Kazakbayeva, D. Shah, F.S. Mjalli, Fluid Phase Equilibr. 441 (2017) 43-48.
    [41]
    C.B. Yue, A.Q. Mao, Y.Y. Wei, M.J. Lv, Catal. Commun. 9 (2018) 1571-1574.
    [42]
    H. Mona, S. Hashem, Chinese J. Chem. 25 (2007) 1563-1567.
    [43]
    S. Liu, Y.X. Ni, W.J. Wei, F.L. Qiu, S.L. Xu, A.G. Ying, J. Chem. Res. 38 (2014) 186-188.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (180) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return