Citation: | Kongyao Chen, Gaojie Li, Yanjie Wang, Weihua Chen, Liwei Mi. High loading FeS2 nanoparticles anchored on biomass-derived carbon tube as low cost and long cycle anode for sodium-ion batteries. Green Energy&Environment, 2020, 5(1): 50-58. doi: 10.1016/j.gee.2019.11.001 |
[1] |
J. B. Goodenough, K. S. Park, The Li-ion rechargeable battery: a perspective, J. Am. Chem. Soc., 135 (2013), pp. 1167-1176.
|
[2] |
J. Deng, W. Luo, S. Chou, H. Liu, S. Dou, Sodium-ion batteries: from academic research to practical commercialization, Adv. Energy Mater., 8 (2018), pp. 1701428.
|
[3] |
X. Zhu, X. Jiang, X. Liu, L. Xiao, Y. Cao, A green route to synthesize low-cost and high-performance hard carbon as promising sodium-ion battery anodes from sorghum stalk waste, Green Energy & Environment, 2 (2017), pp. 310-315.
|
[4] |
K. Lei, C. Wang, L. Liu, Y. Luo, C. Mu, F. Li, J. Chen, A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries, Angew. Chem. Int. Ed., 57 (2018), pp. 4687-4691.
|
[5] |
Q. Pan, Q. Zhang, F. Zheng, Y. Liu, Y. Li, X. Ou, X. Xiong, C. Yang, M. Liu, Construction of MoS2/C hierarchical tubular heterostructures for high-performance sodium ion batteries, ACS Nano, 12 (2018), pp. 12578-12586.
|
[6] |
Y. Lu, B. Li, S. Zheng, Y. Xu, H. Xue, H. Pang, Syntheses and energy storage applications of MxSy (M = Cu, Ag, Au) and their composites: rechargeable batteries and supercapacitors, Adv. Funct. Mater., 27 (2017), pp. 1703949.
|
[7] |
S. Liu, X. Zhang, R. Li, L. Gao, J. Luo, Dendrite-free Li metal anode by lowering deposition interface energy with Cu99Zn alloy coating, Energy Storage Materials, 14 (2018), pp. 143-148.
|
[8] |
D. Fang, S. Chen, X. Wang, Y. Bando, D. Golberg, S. Zhang, ZnS quantum dots@multilayered carbon: geological-plate-movement-inspired design for high-energy Li-ion batteries, J. Mater. Chem. A, 6 (2018), pp. 8358-8365.
|
[9] |
J. Chen, J. Ye, X. Zhang, M. D. Symes, S. Fan, D. Long, M. Zheng, D. Wu, L. Cronin, Q. Dong, Design and performance of rechargeable sodium ion batteries, and symmetrical Li-ion batteries with supercapacitor-like power density based upon polyoxovanadates, Adv. Energy Mater., 8 (2017), pp. 1701021.
|
[10] |
B. Chen, H. Lu, J. Zhou, C. Ye, C. Shi, N. Zhao, S. Qiao, Porous MoS2/carbon spheres anchored on 3D interconnected multiwall carbon nanotube networks for ultrafast Na storage, Adv. Energy Mater., 8 (2018), pp. 1702909.
|
[11] |
W. Tang, J. Wu, X. Wang, X. Xia, J. Tu, Integrated carbon nanospheres arrays as anode materials for boosted sodium ion storage, Green Energy & Environment, 3 (2018), pp. 50-55.
|
[12] |
D. Kundu, E. Talaie, V. Duffort, L. F. Nazar, The emerging chemistry of sodium ion batteries for electrochemical energy storage, Angew. Chem. Int. Ed., 54 (2015), pp. 3431-3448.
|
[13] |
P. K. Nayak, L. Yang, W. Brehm, P. Adelhelm, From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises, Angew. Chem. Int. Ed., 57 (2017), pp. 102-120.
|
[14] |
Y. Luo, Y. Tang, S. Zheng, Y. Yan, H. Xue, H. Pang, Dual anode materials for lithium- and sodium-ion batteries, J. Mater. Chem. A, 6 (2018), pp. 4236-4259.
|
[15] |
M. Song, C. Wang, D. Du, F. Li, J. Chen, A high-energy-density sodium-ion full battery based on tin anode, Science China Chemistry, 62 (2019), pp. 616-621.
|
[16] |
S. Qiu, L. Xiao, M. L. Sushko, K. S. Han, Y. Shao, M. Yan, X. Liang, L. Mai, J. Feng, Y. Cao, X. Ai, H. Yang, J. Liu, Manipulating Adsorption-Insertion Mechanisms in Nanostructured Carbon Materials for High-Efficiency Sodium Ion Storage, Adv. Energy Mater., 7 (2017), pp. 1700403.
|
[17] |
H. Pan, Y. Hu, L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage, Energy Environ. Sci., 6 (2013), pp. 2338-2360.
|
[18] |
N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries, Chem. Rev., 114 (2014), pp. 11636-11682.
|
[19] |
L. Mu, Y. Lu, X. Wu, Y. Ding, Y. Hu, H. Li, L. Chen, X. Huang, Anthraquinone derivative as high-performance anode material for sodium-ion batteries using ether-based electrolytes, Green Energy & Environment, 3 (2018), pp. 63-70.
|
[20] |
M. D. Slater, D. Kim, E. Lee, C. S. Johnson, Sodium-ion batteries, Adv. Funct. Mater., 23 (2013), pp. 947-958.
|
[21] |
W. Li, S. Chou, J. Wang, H. Liu, S. Dou, Significantly enhance the cycling performance and rate capability for P/C composite via chemical bonding (P-C), J. Mater. Chem. A, 4 (2015), pp. 505-511.
|
[22] |
J. Liu, P. Kopold, C. Wu, P. A. van Aken, J. Maier, Y. Yu, Uniform yolk-shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries, Energy Environ. Sci., 8 (2015), pp. 3531-3538.
|
[23] |
W. Ren, H. Zhang, C. Guan, C. Cheng, SnS2 nanosheets arrays sandwiched by N-doped carbon and TiO2 for high-performance Na-ion storage, Green Energy & Environment, 3 (2018), pp. 42-49.
|
[24] |
B. Hou, Y. Wang, Q. Ning, W. Li, X. Xi, X. Yang, H. Liang, X. Feng, X. Wu, Self-Supporting, Flexible, Additive-Free, and Scalable Hard Carbon Paper Self-Interwoven by 1D Microbelts: Superb Room/Low-Temperature Sodium Storage and Working Mechanism, Adv. Mater., 31 (2019), pp. 1903125.
|
[25] |
C. Wu, Y. Jiang, P. Kopold, P. A. van Aken, J. Maier, Y. Yu, Peapod-like carbon-encapsulated cobalt chalcogenide nanowires as cycle-stable and high-rate materials for sodium-ion anodes, Adv. Mater., 28 (2016), pp. 7276-7283.
|
[26] |
P. Zhang, F. Qin, L. Zou, M. Wang, K. Zhang, Y. Lai, J. Li, Few-layered MoS2/C with expanding d-spacing as a high-performance anode for sodium-ion batteries, Nanoscale, 9 (2017), pp. 12189-12195.
|
[27] |
C. Jo, J. U. Choi, S. Myung, Rocksalt-type metal sulfide anodes for high-rate sodium storage, J. Mater. Chem. A, 6 (2018), pp. 6867-6873.
|
[28] |
X. Xiong, C. Yang, G. Wang, Y. Lin, X. Ou, J.-H. Wang, B. Zhao, M. Liu, Z. Lin, K. Huang, SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries, Energy Environ. Sci., 10 (2017), pp. 1757-1763.
|
[29] |
D. Y. W. Yu, P. V. Prikhodchenko, C. W. Mason, S. K. Batabyal, J. Gun, S. Sladkevich, A. G. Medvedev, O. Lev, High-Capacity Antimony Sulphide Nanoparticle-Decorated Graphene Composite as Anode for Sodium-Ion Batteries, Nat. Commun., 4 (2013), pp. 2922.
|
[30] |
Y. Liu, H. Wang, L. Cheng, N. Han, F. Zhao, P. Li, C. Jin, Y. Li, TiS2 nanoplates: a high-rate and stable electrode material for sodium ion batteries, Nano Energy, 20 (2016), pp. 168-175.
|
[31] |
W. Chen, X. Zhang, L. Mi, C. Liu, J. Zhang, S. Cui, X. Feng, Y. Cao, C. Shen, High-performance flexible freestanding anode with hierarchical 3D carbon-networks/Fe7S8/graphene for applicable sodium-ion batteries, Adv. Mater., 31 (2019), pp. 1806664.
|
[32] |
C. Yang, X. Liang, X. Ou, Q. Zhang, H.-S. Zheng, F. Zheng, J.-H. Wang, K. Huang, M. Liu, Heterostructured Nanocube-Shaped Binary Sulfide (SnCo)S2 Interlaced with S-Doped Graphene as a High-Performance Anode for Advanced Na+ Batteries, Adv. Funct. Mater., 29 (2019), pp. 1807971.
|
[33] |
J. Liu, Y. Wen, Y. Wang, P. A. van Aken, J. Maier, Y. Yu, Carbon-encapsulated pyrite as stable and earth-abundant high energy cathode material for rechargeable lithium batteries, Adv. Mater., 26 (2014), pp. 6025-6030.
|
[34] |
W. Chen, S. Qi, L. Guan, C. Liu, S. Cui, C. Shen, L. Mi, Pyrite FeS2 microspheres anchoring on reduced graphene oxide aerogel as an enhanced electrode material for sodium-ion batteries, J. Mater. Chem. A, 5 (2017), pp. 5332-5341.
|
[35] |
M. Walter, T. Zund, M. V. Kovalenko, Pyrite (FeS2) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials, Nanoscale, 7 (2015), pp. 9158-9163.
|
[36] |
Z. Hu, Z. Zhu, F. Cheng, K. Zhang, J. Wang, C. Chen, J. Chen, Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries, Energy Environ. Sci., 8 (2015), pp. 1309-1316.
|
[37] |
K. Chen, W. Zhang, L. Xue, W. Chen, X. Xiang, M. Wan, Y. Huang, Mechanism of capacity fade in sodium storage and the strategies of improvement for FeS2 anode, ACS Appl. Mat. Interfaces, 9 (2017), pp. 1536-1541.
|
[38] |
K. Zhang, M. Park, L. Zhou, G.-H. Lee, J. Shin, Z. Hu, S. Chou, J. Chen, Y.-M. Kang, Cobalt-doped FeS2 nanospheres with complete solid solubility as a high-performance anode material for sodium-ion batteries, Angew. Chem. Int. Ed., 55 (2016), pp. 12822-12826.
|
[39] |
Y. Huang, Z. Wang, Y. Jiang, S. Li, Z. Li, H. Zhang, F. Wu, M. Xie, L. Li, R. Chen, Hierarchical porous Co0.85Se@reduced graphene oxide ultrathin nanosheets with vacancy-enhanced kinetics as superior anodes for sodium-ion batteries, Nano Energy, 53 (2018), pp. 524-535.
|
[40] |
Z. Lu, N. Wang, Y. Zhang, P. Xue, M. Guo, B. Tang, Z. Bai, S. Dou, Pyrite FeS2@C nanorods as smart cathode for sodium ion battery with ultra-long lifespan and notable rate performance from tunable pseudocapacitance, Electrochim. Acta, 260 (2018), pp. 755-761.
|
[41] |
S. Qi, L. Mi, K. Song, K. Yang, J. Ma, X. Feng, J. Zhang, W. Chen, Understanding shuttling effect in sodium ion batteries for the solution of capacity fading: FeS2 as an example, The Journal of Physical Chemistry C, 123 (2019), pp. 2775-2782.
|
[42] |
Y. Tan, K. W. Wong, Z. Zhang, K. M. Ng, In-situ synthesis of iron sulfide embedded porous carbon hollow spheres for sodium ion battery, Nanoscale, 9 (2017), pp. 19408-19414.
|
[43] |
Y. Wang, J. Yang, S. Chou, H. Liu, W. Zhang, D. Zhao, S. Dou, Uniform yolk-shell iron sulfide-carbon nanospheres for superior sodium-iron sulfide batteries, Nat. Commun., 6 (2015), pp. 8689.
|
[44] |
D. Yang, W. Chen, X. Zhang, L. Mi, C. Liu, L. Chen, X. Guan, Y. Cao, C. Shen, Facile and scalable synthesis of low-cost FeS@C as long-cycle anodes for sodium-ion batteries, J. Mater. Chem. A, 7 (2019), pp. 19709-19718.
|
[45] |
A. Douglas, R. Carter, L. Oakes, K. Share, A. P. Cohn, C. L. Pint, Ultrafine iron pyrite (FeS2) nanocrystals improve sodium-sulfur and lithium-sulfur conversion reactions for efficient batteries, ACS Nano, 9 (2015), pp. 11156-11165.
|
[46] |
R. Hu, H. Zhao, J. Zhang, Q. Liang, Y. Wang, B. Guo, R. Dangol, Y. Zheng, Q. Yan, J. Zhu, Scalable synthesis of a foam-like FeS2 nanostructure by a solution combustion-sulfurization process for high-capacity sodium-ion batteries, Nanoscale, 11 (2019), pp. 178-184.
|
[47] |
Z. Liu, T. Lu, T. Song, X. Yu, X. Lou, U. Paik, Structure-designed synthesis of FeS2@C yolk-shell nanoboxes as a high-performance anode for sodium-ion batteries, Energy Environ. Sci., 10 (2017), pp. 1576-1580.
|
[48] |
Q. Wang, C. Guo, Y. Zhu, J. He, H. Wang, Reduced graphene oxide-wrapped FeS2 composite as anode for high-performance sodium-ion batteries, Nano-Micro Letters, 10 (2018), pp. 30.
|
[49] |
W. Chen, S. Qi, M. Yu, X. Feng, S. Cui, J. Zhang, L. Mi, Design of FeS2@rGO composite with enhanced rate and cyclic performances for sodium ion batteries, Electrochim. Acta, 230 (2017), pp. 1-9.
|
[50] |
P. Chen, L. Wang, G. Wang, M. Gao, J. Ge, W. Yuan, Y. Shen, A. Xie, S. Yu, Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction, Energy Environ. Sci., 7 (2014), pp. 4095-4103.
|
[51] |
L. Zhao, N. Baccile, S. Gross, Y. Zhang, W. Wei, Y. Sun, M. Antonietti, M.-M. Titirici, Sustainable nitrogen-doped carbonaceous materials from biomass derivatives, Carbon, 48 (2010), pp. 3778-3787.
|
[52] |
F. Shen, W. Luo, J. Dai, Y. Yao, M. Zhu, E. Hitz, Y. Tang, Y. Chen, V. L. Sprenkle, X. Li, L. Hu, Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries, Adv. Energy Mater., 6 (2016), pp. 1600377.
|
[53] |
T. Yang, X. Niu, T. Qian, X. Shen, J. Zhou, N. Xu, C. Yan, Half and full sodium-ion batteries based on maize with high-loading density and long-cycle life, Nanoscale, 8 (2016), pp. 15497-15504.
|
[54] |
B. Wang, X. L. Li, B. Luo, J. X. Yang, X. J. Wang, Q. Song, S. Y. Chen, L. J. Zhi, Pyrolyzed bacterial cellulose: a versatile support for lithium ion battery anode materials, Small, 9 (2013), pp. 2399-2404.
|
[55] |
Z. Zhu, F. Liang, Z. Zhou, X. Zeng, D. Wang, P. Dong, J. Zhao, S. Sun, Y. Zhang, X. Li, Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries, J. Mater. Chem. A, 6 (2018), pp. 1513-1522.
|
[56] |
L. Yan, J. Yu, J. Houston, N. Flores, H. Luo, Biomass derived porous nitrogen doped carbon for electrochemical devices, Green Energy & Environment, 2 (2017), pp. 84-99.
|
[57] |
K. Chen, W. Zhang, Y. Liu, H. Zhu, J. Duan, X. Xiang, L. Xue, Y. Huang, Carbon coated K0.8Ti1.73Li0.27O4: a novel anode material for sodium-ion batteries with a long cycle life, Chem. Commun., 51 (2015), pp. 1608-1611.
|
[58] |
X. Xie, T. Makaryan, M. Zhao, K. L. Van Aken, Y. Gogotsi, G. Wang, MoS2 nanosheets vertically aligned on carbon paper: a freestanding electrode for highly reversible sodium-ion batteries, Adv. Energy Mater., 6 (2016), pp. 1502161.
|
[59] |
M. Blanchard, M. Alfredsson, J. Brodholt, G. D. Price, K. Wright, C. R. Catlow, Electronic structure study of the high-pressure vibrational spectrum of FeS2 pyrite, J. Phys. Chem. B, 109 (2005), pp. 22067-22073.
|
[60] |
M. Fantauzzi, C. Licheri, D. Atzei, G. Loi, B. Elsener, G. Rossi, A. Rossi, Arsenopyrite and pyrite bioleaching: evidence from XPS, XRD and ICP techniques, Anal. Bioanal.Chem., 401 (2011), pp. 2237-2248.
|
[61] |
S. Zhang, F. Yao, L. Yang, F. Zhang, S. Xu, Sulfur-doped mesoporous carbon from surfactant-intercalated layered double hydroxide precursor as high-performance anode nanomaterials for both Li-ion and Na-ion batteries, Carbon, 93 (2015), pp. 143-150.
|
[62] |
Y. Chen, X. Hu, B. Evanko, X. Sun, X. Li, T. Hou, S. Cai, C. Zheng, W. Hu, G. D. Stucky, High-rate FeS2/CNT neural network nanostructure composite anodes for stable, high-capacity sodium-ion batteries, Nano Energy, 46 (2018), pp. 117-127.
|
[63] |
D. Su, K. Kretschmer, G. Wang, Improved electrochemical performance of Na-ion batteries in ether-based electrolytes: a case study of ZnS nanospheres, Adv. Energy Mater., 6 (2016), pp. 1501785.
|
[64] |
L. Wang, J. Wang, F. Guo, L. Ma, Y. Ren, T. Wu, P. Zuo, G. Yin, J. Wang, Understanding the initial irreversibility of metal sulfides for sodium-ion batteries via operando techniques, Nano Energy, 43 (2017), pp. 184-191.
|
[65] |
A. Kitajou, J. Yamaguchi, S. Hara, S. Okada, Discharge/charge reaction mechanism of a pyrite-type FeS2 cathode for sodium secondary batteries, J. Power Sources, 247 (2014), pp. 391-395.
|
[66] |
S. Dong, L. Shen, H. Li, P. Nie, Y. Zhu, Q. Sheng, X. Zhang, Pseudocapacitive behaviours of Na2Ti3O7@CNT coaxial nanocables for high-performance sodium-ion capacitors, J. Mater. Chem. A, 3 (2015), pp. 21277-21283.
|
[67] |
W. Zhao, C. Guo, C. Li, Lychee-like FeS2@FeSe2 core-shell microspheres anode in sodium ion batteries for large capacity and ultralong cycle life, J. Mater. Chem. A, 5 (2017), pp. 19195-19202.
|