Kongyao Chen, Gaojie Li, Yanjie Wang, Weihua Chen, Liwei Mi. High loading FeS2 nanoparticles anchored on biomass-derived carbon tube as low cost and long cycle anode for sodium-ion batteries. Green Energy&Environment, 2020, 5(1): 50-58. doi: 10.1016/j.gee.2019.11.001
Citation: Kongyao Chen, Gaojie Li, Yanjie Wang, Weihua Chen, Liwei Mi. High loading FeS2 nanoparticles anchored on biomass-derived carbon tube as low cost and long cycle anode for sodium-ion batteries. Green Energy&Environment, 2020, 5(1): 50-58. doi: 10.1016/j.gee.2019.11.001

High loading FeS2 nanoparticles anchored on biomass-derived carbon tube as low cost and long cycle anode for sodium-ion batteries

doi: 10.1016/j.gee.2019.11.001
  • In recent years, the sodium storage mechanism and performance optimization of FeS2 have been studied intensively. However, before the commercial application of FeS2, preconditions of low-cost, simple craft and scale production of nanoscale FeS2 are also essential. Based on above challenges, mesh-like FeS2/carbon tube/FeS2 composites are prepared simply from green, low-cost and renewable natural herb in this work. With the assistance of protogenetic interconnected carbon tube network (only 5.3 wt%), FeS2/carbon tube/FeS2 composites show high capacity (542.2 mA h g−1), good stability (< 0.005% per cycle over 1000 cycles), and excellent rate performance (426.2 mA h g−1 at 2 A g−1). The outstanding electrochemical performance of FeS2/carbon tube/FeS2 composites may be attributed to the unique interconnected reticular structure, meaning that FeS2 nanoparticles are effectively immobilized by carbon tube network via physical encapsulation and chemical bonding. More importantly, this work may provide green and low cost preparation method for specially structured metal sulfides/carbon composites, which promotes their commercial utilization in environmentally friendly energy storage system.

     

  • Both authors contributed equally to this work.
  • loading
  • [1]
    J. B. Goodenough, K. S. Park, The Li-ion rechargeable battery: a perspective, J. Am. Chem. Soc., 135 (2013), pp. 1167-1176.
    [2]
    J. Deng, W. Luo, S. Chou, H. Liu, S. Dou, Sodium-ion batteries: from academic research to practical commercialization, Adv. Energy Mater., 8 (2018), pp. 1701428.
    [3]
    X. Zhu, X. Jiang, X. Liu, L. Xiao, Y. Cao, A green route to synthesize low-cost and high-performance hard carbon as promising sodium-ion battery anodes from sorghum stalk waste, Green Energy & Environment, 2 (2017), pp. 310-315.
    [4]
    K. Lei, C. Wang, L. Liu, Y. Luo, C. Mu, F. Li, J. Chen, A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries, Angew. Chem. Int. Ed., 57 (2018), pp. 4687-4691.
    [5]
    Q. Pan, Q. Zhang, F. Zheng, Y. Liu, Y. Li, X. Ou, X. Xiong, C. Yang, M. Liu, Construction of MoS2/C hierarchical tubular heterostructures for high-performance sodium ion batteries, ACS Nano, 12 (2018), pp. 12578-12586.
    [6]
    Y. Lu, B. Li, S. Zheng, Y. Xu, H. Xue, H. Pang, Syntheses and energy storage applications of MxSy (M = Cu, Ag, Au) and their composites: rechargeable batteries and supercapacitors, Adv. Funct. Mater., 27 (2017), pp. 1703949.
    [7]
    S. Liu, X. Zhang, R. Li, L. Gao, J. Luo, Dendrite-free Li metal anode by lowering deposition interface energy with Cu99Zn alloy coating, Energy Storage Materials, 14 (2018), pp. 143-148.
    [8]
    D. Fang, S. Chen, X. Wang, Y. Bando, D. Golberg, S. Zhang, ZnS quantum dots@multilayered carbon: geological-plate-movement-inspired design for high-energy Li-ion batteries, J. Mater. Chem. A, 6 (2018), pp. 8358-8365.
    [9]
    J. Chen, J. Ye, X. Zhang, M. D. Symes, S. Fan, D. Long, M. Zheng, D. Wu, L. Cronin, Q. Dong, Design and performance of rechargeable sodium ion batteries, and symmetrical Li-ion batteries with supercapacitor-like power density based upon polyoxovanadates, Adv. Energy Mater., 8 (2017), pp. 1701021.
    [10]
    B. Chen, H. Lu, J. Zhou, C. Ye, C. Shi, N. Zhao, S. Qiao, Porous MoS2/carbon spheres anchored on 3D interconnected multiwall carbon nanotube networks for ultrafast Na storage, Adv. Energy Mater., 8 (2018), pp. 1702909.
    [11]
    W. Tang, J. Wu, X. Wang, X. Xia, J. Tu, Integrated carbon nanospheres arrays as anode materials for boosted sodium ion storage, Green Energy & Environment, 3 (2018), pp. 50-55.
    [12]
    D. Kundu, E. Talaie, V. Duffort, L. F. Nazar, The emerging chemistry of sodium ion batteries for electrochemical energy storage, Angew. Chem. Int. Ed., 54 (2015), pp. 3431-3448.
    [13]
    P. K. Nayak, L. Yang, W. Brehm, P. Adelhelm, From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises, Angew. Chem. Int. Ed., 57 (2017), pp. 102-120.
    [14]
    Y. Luo, Y. Tang, S. Zheng, Y. Yan, H. Xue, H. Pang, Dual anode materials for lithium- and sodium-ion batteries, J. Mater. Chem. A, 6 (2018), pp. 4236-4259.
    [15]
    M. Song, C. Wang, D. Du, F. Li, J. Chen, A high-energy-density sodium-ion full battery based on tin anode, Science China Chemistry, 62 (2019), pp. 616-621.
    [16]
    S. Qiu, L. Xiao, M. L. Sushko, K. S. Han, Y. Shao, M. Yan, X. Liang, L. Mai, J. Feng, Y. Cao, X. Ai, H. Yang, J. Liu, Manipulating Adsorption-Insertion Mechanisms in Nanostructured Carbon Materials for High-Efficiency Sodium Ion Storage, Adv. Energy Mater., 7 (2017), pp. 1700403.
    [17]
    H. Pan, Y. Hu, L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage, Energy Environ. Sci., 6 (2013), pp. 2338-2360.
    [18]
    N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries, Chem. Rev., 114 (2014), pp. 11636-11682.
    [19]
    L. Mu, Y. Lu, X. Wu, Y. Ding, Y. Hu, H. Li, L. Chen, X. Huang, Anthraquinone derivative as high-performance anode material for sodium-ion batteries using ether-based electrolytes, Green Energy & Environment, 3 (2018), pp. 63-70.
    [20]
    M. D. Slater, D. Kim, E. Lee, C. S. Johnson, Sodium-ion batteries, Adv. Funct. Mater., 23 (2013), pp. 947-958.
    [21]
    W. Li, S. Chou, J. Wang, H. Liu, S. Dou, Significantly enhance the cycling performance and rate capability for P/C composite via chemical bonding (P-C), J. Mater. Chem. A, 4 (2015), pp. 505-511.
    [22]
    J. Liu, P. Kopold, C. Wu, P. A. van Aken, J. Maier, Y. Yu, Uniform yolk-shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries, Energy Environ. Sci., 8 (2015), pp. 3531-3538.
    [23]
    W. Ren, H. Zhang, C. Guan, C. Cheng, SnS2 nanosheets arrays sandwiched by N-doped carbon and TiO2 for high-performance Na-ion storage, Green Energy & Environment, 3 (2018), pp. 42-49.
    [24]
    B. Hou, Y. Wang, Q. Ning, W. Li, X. Xi, X. Yang, H. Liang, X. Feng, X. Wu, Self-Supporting, Flexible, Additive-Free, and Scalable Hard Carbon Paper Self-Interwoven by 1D Microbelts: Superb Room/Low-Temperature Sodium Storage and Working Mechanism, Adv. Mater., 31 (2019), pp. 1903125.
    [25]
    C. Wu, Y. Jiang, P. Kopold, P. A. van Aken, J. Maier, Y. Yu, Peapod-like carbon-encapsulated cobalt chalcogenide nanowires as cycle-stable and high-rate materials for sodium-ion anodes, Adv. Mater., 28 (2016), pp. 7276-7283.
    [26]
    P. Zhang, F. Qin, L. Zou, M. Wang, K. Zhang, Y. Lai, J. Li, Few-layered MoS2/C with expanding d-spacing as a high-performance anode for sodium-ion batteries, Nanoscale, 9 (2017), pp. 12189-12195.
    [27]
    C. Jo, J. U. Choi, S. Myung, Rocksalt-type metal sulfide anodes for high-rate sodium storage, J. Mater. Chem. A, 6 (2018), pp. 6867-6873.
    [28]
    X. Xiong, C. Yang, G. Wang, Y. Lin, X. Ou, J.-H. Wang, B. Zhao, M. Liu, Z. Lin, K. Huang, SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries, Energy Environ. Sci., 10 (2017), pp. 1757-1763.
    [29]
    D. Y. W. Yu, P. V. Prikhodchenko, C. W. Mason, S. K. Batabyal, J. Gun, S. Sladkevich, A. G. Medvedev, O. Lev, High-Capacity Antimony Sulphide Nanoparticle-Decorated Graphene Composite as Anode for Sodium-Ion Batteries, Nat. Commun., 4 (2013), pp. 2922.
    [30]
    Y. Liu, H. Wang, L. Cheng, N. Han, F. Zhao, P. Li, C. Jin, Y. Li, TiS2 nanoplates: a high-rate and stable electrode material for sodium ion batteries, Nano Energy, 20 (2016), pp. 168-175.
    [31]
    W. Chen, X. Zhang, L. Mi, C. Liu, J. Zhang, S. Cui, X. Feng, Y. Cao, C. Shen, High-performance flexible freestanding anode with hierarchical 3D carbon-networks/Fe7S8/graphene for applicable sodium-ion batteries, Adv. Mater., 31 (2019), pp. 1806664.
    [32]
    C. Yang, X. Liang, X. Ou, Q. Zhang, H.-S. Zheng, F. Zheng, J.-H. Wang, K. Huang, M. Liu, Heterostructured Nanocube-Shaped Binary Sulfide (SnCo)S2 Interlaced with S-Doped Graphene as a High-Performance Anode for Advanced Na+ Batteries, Adv. Funct. Mater., 29 (2019), pp. 1807971.
    [33]
    J. Liu, Y. Wen, Y. Wang, P. A. van Aken, J. Maier, Y. Yu, Carbon-encapsulated pyrite as stable and earth-abundant high energy cathode material for rechargeable lithium batteries, Adv. Mater., 26 (2014), pp. 6025-6030.
    [34]
    W. Chen, S. Qi, L. Guan, C. Liu, S. Cui, C. Shen, L. Mi, Pyrite FeS2 microspheres anchoring on reduced graphene oxide aerogel as an enhanced electrode material for sodium-ion batteries, J. Mater. Chem. A, 5 (2017), pp. 5332-5341.
    [35]
    M. Walter, T. Zund, M. V. Kovalenko, Pyrite (FeS2) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials, Nanoscale, 7 (2015), pp. 9158-9163.
    [36]
    Z. Hu, Z. Zhu, F. Cheng, K. Zhang, J. Wang, C. Chen, J. Chen, Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries, Energy Environ. Sci., 8 (2015), pp. 1309-1316.
    [37]
    K. Chen, W. Zhang, L. Xue, W. Chen, X. Xiang, M. Wan, Y. Huang, Mechanism of capacity fade in sodium storage and the strategies of improvement for FeS2 anode, ACS Appl. Mat. Interfaces, 9 (2017), pp. 1536-1541.
    [38]
    K. Zhang, M. Park, L. Zhou, G.-H. Lee, J. Shin, Z. Hu, S. Chou, J. Chen, Y.-M. Kang, Cobalt-doped FeS2 nanospheres with complete solid solubility as a high-performance anode material for sodium-ion batteries, Angew. Chem. Int. Ed., 55 (2016), pp. 12822-12826.
    [39]
    Y. Huang, Z. Wang, Y. Jiang, S. Li, Z. Li, H. Zhang, F. Wu, M. Xie, L. Li, R. Chen, Hierarchical porous Co0.85Se@reduced graphene oxide ultrathin nanosheets with vacancy-enhanced kinetics as superior anodes for sodium-ion batteries, Nano Energy, 53 (2018), pp. 524-535.
    [40]
    Z. Lu, N. Wang, Y. Zhang, P. Xue, M. Guo, B. Tang, Z. Bai, S. Dou, Pyrite FeS2@C nanorods as smart cathode for sodium ion battery with ultra-long lifespan and notable rate performance from tunable pseudocapacitance, Electrochim. Acta, 260 (2018), pp. 755-761.
    [41]
    S. Qi, L. Mi, K. Song, K. Yang, J. Ma, X. Feng, J. Zhang, W. Chen, Understanding shuttling effect in sodium ion batteries for the solution of capacity fading: FeS2 as an example, The Journal of Physical Chemistry C, 123 (2019), pp. 2775-2782.
    [42]
    Y. Tan, K. W. Wong, Z. Zhang, K. M. Ng, In-situ synthesis of iron sulfide embedded porous carbon hollow spheres for sodium ion battery, Nanoscale, 9 (2017), pp. 19408-19414.
    [43]
    Y. Wang, J. Yang, S. Chou, H. Liu, W. Zhang, D. Zhao, S. Dou, Uniform yolk-shell iron sulfide-carbon nanospheres for superior sodium-iron sulfide batteries, Nat. Commun., 6 (2015), pp. 8689.
    [44]
    D. Yang, W. Chen, X. Zhang, L. Mi, C. Liu, L. Chen, X. Guan, Y. Cao, C. Shen, Facile and scalable synthesis of low-cost FeS@C as long-cycle anodes for sodium-ion batteries, J. Mater. Chem. A, 7 (2019), pp. 19709-19718.
    [45]
    A. Douglas, R. Carter, L. Oakes, K. Share, A. P. Cohn, C. L. Pint, Ultrafine iron pyrite (FeS2) nanocrystals improve sodium-sulfur and lithium-sulfur conversion reactions for efficient batteries, ACS Nano, 9 (2015), pp. 11156-11165.
    [46]
    R. Hu, H. Zhao, J. Zhang, Q. Liang, Y. Wang, B. Guo, R. Dangol, Y. Zheng, Q. Yan, J. Zhu, Scalable synthesis of a foam-like FeS2 nanostructure by a solution combustion-sulfurization process for high-capacity sodium-ion batteries, Nanoscale, 11 (2019), pp. 178-184.
    [47]
    Z. Liu, T. Lu, T. Song, X. Yu, X. Lou, U. Paik, Structure-designed synthesis of FeS2@C yolk-shell nanoboxes as a high-performance anode for sodium-ion batteries, Energy Environ. Sci., 10 (2017), pp. 1576-1580.
    [48]
    Q. Wang, C. Guo, Y. Zhu, J. He, H. Wang, Reduced graphene oxide-wrapped FeS2 composite as anode for high-performance sodium-ion batteries, Nano-Micro Letters, 10 (2018), pp. 30.
    [49]
    W. Chen, S. Qi, M. Yu, X. Feng, S. Cui, J. Zhang, L. Mi, Design of FeS2@rGO composite with enhanced rate and cyclic performances for sodium ion batteries, Electrochim. Acta, 230 (2017), pp. 1-9.
    [50]
    P. Chen, L. Wang, G. Wang, M. Gao, J. Ge, W. Yuan, Y. Shen, A. Xie, S. Yu, Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction, Energy Environ. Sci., 7 (2014), pp. 4095-4103.
    [51]
    L. Zhao, N. Baccile, S. Gross, Y. Zhang, W. Wei, Y. Sun, M. Antonietti, M.-M. Titirici, Sustainable nitrogen-doped carbonaceous materials from biomass derivatives, Carbon, 48 (2010), pp. 3778-3787.
    [52]
    F. Shen, W. Luo, J. Dai, Y. Yao, M. Zhu, E. Hitz, Y. Tang, Y. Chen, V. L. Sprenkle, X. Li, L. Hu, Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries, Adv. Energy Mater., 6 (2016), pp. 1600377.
    [53]
    T. Yang, X. Niu, T. Qian, X. Shen, J. Zhou, N. Xu, C. Yan, Half and full sodium-ion batteries based on maize with high-loading density and long-cycle life, Nanoscale, 8 (2016), pp. 15497-15504.
    [54]
    B. Wang, X. L. Li, B. Luo, J. X. Yang, X. J. Wang, Q. Song, S. Y. Chen, L. J. Zhi, Pyrolyzed bacterial cellulose: a versatile support for lithium ion battery anode materials, Small, 9 (2013), pp. 2399-2404.
    [55]
    Z. Zhu, F. Liang, Z. Zhou, X. Zeng, D. Wang, P. Dong, J. Zhao, S. Sun, Y. Zhang, X. Li, Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries, J. Mater. Chem. A, 6 (2018), pp. 1513-1522.
    [56]
    L. Yan, J. Yu, J. Houston, N. Flores, H. Luo, Biomass derived porous nitrogen doped carbon for electrochemical devices, Green Energy & Environment, 2 (2017), pp. 84-99.
    [57]
    K. Chen, W. Zhang, Y. Liu, H. Zhu, J. Duan, X. Xiang, L. Xue, Y. Huang, Carbon coated K0.8Ti1.73Li0.27O4: a novel anode material for sodium-ion batteries with a long cycle life, Chem. Commun., 51 (2015), pp. 1608-1611.
    [58]
    X. Xie, T. Makaryan, M. Zhao, K. L. Van Aken, Y. Gogotsi, G. Wang, MoS2 nanosheets vertically aligned on carbon paper: a freestanding electrode for highly reversible sodium-ion batteries, Adv. Energy Mater., 6 (2016), pp. 1502161.
    [59]
    M. Blanchard, M. Alfredsson, J. Brodholt, G. D. Price, K. Wright, C. R. Catlow, Electronic structure study of the high-pressure vibrational spectrum of FeS2 pyrite, J. Phys. Chem. B, 109 (2005), pp. 22067-22073.
    [60]
    M. Fantauzzi, C. Licheri, D. Atzei, G. Loi, B. Elsener, G. Rossi, A. Rossi, Arsenopyrite and pyrite bioleaching: evidence from XPS, XRD and ICP techniques, Anal. Bioanal.Chem., 401 (2011), pp. 2237-2248.
    [61]
    S. Zhang, F. Yao, L. Yang, F. Zhang, S. Xu, Sulfur-doped mesoporous carbon from surfactant-intercalated layered double hydroxide precursor as high-performance anode nanomaterials for both Li-ion and Na-ion batteries, Carbon, 93 (2015), pp. 143-150.
    [62]
    Y. Chen, X. Hu, B. Evanko, X. Sun, X. Li, T. Hou, S. Cai, C. Zheng, W. Hu, G. D. Stucky, High-rate FeS2/CNT neural network nanostructure composite anodes for stable, high-capacity sodium-ion batteries, Nano Energy, 46 (2018), pp. 117-127.
    [63]
    D. Su, K. Kretschmer, G. Wang, Improved electrochemical performance of Na-ion batteries in ether-based electrolytes: a case study of ZnS nanospheres, Adv. Energy Mater., 6 (2016), pp. 1501785.
    [64]
    L. Wang, J. Wang, F. Guo, L. Ma, Y. Ren, T. Wu, P. Zuo, G. Yin, J. Wang, Understanding the initial irreversibility of metal sulfides for sodium-ion batteries via operando techniques, Nano Energy, 43 (2017), pp. 184-191.
    [65]
    A. Kitajou, J. Yamaguchi, S. Hara, S. Okada, Discharge/charge reaction mechanism of a pyrite-type FeS2 cathode for sodium secondary batteries, J. Power Sources, 247 (2014), pp. 391-395.
    [66]
    S. Dong, L. Shen, H. Li, P. Nie, Y. Zhu, Q. Sheng, X. Zhang, Pseudocapacitive behaviours of Na2Ti3O7@CNT coaxial nanocables for high-performance sodium-ion capacitors, J. Mater. Chem. A, 3 (2015), pp. 21277-21283.
    [67]
    W. Zhao, C. Guo, C. Li, Lychee-like FeS2@FeSe2 core-shell microspheres anode in sodium ion batteries for large capacity and ultralong cycle life, J. Mater. Chem. A, 5 (2017), pp. 19195-19202.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (232) PDF downloads(26) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return