Xiangqi Meng, Yaolin Xu, Hongbin Cao, Xiao Lin, Pengge Ning, Yi Zhang, Yaiza Gonzalez Garcia, Zhi Sun. Internal failure of anode materials for lithium batteries — A critical review. Green Energy&Environment, 2020, 5(1): 22-36. doi: 10.1016/j.gee.2019.10.003
Citation: Xiangqi Meng, Yaolin Xu, Hongbin Cao, Xiao Lin, Pengge Ning, Yi Zhang, Yaiza Gonzalez Garcia, Zhi Sun. Internal failure of anode materials for lithium batteries — A critical review. Green Energy&Environment, 2020, 5(1): 22-36. doi: 10.1016/j.gee.2019.10.003

Internal failure of anode materials for lithium batteries — A critical review

doi: 10.1016/j.gee.2019.10.003
  • Prevention of mechanical and finally electrochemical failures of lithium batteries is a critical aspect to be considered during their design and performance, especially for those with high specific capacities. Internal failure is observed as one of the most serious factors, including loss of electrode materials, structure deformation and dendrite growth. It usually incubates from atomic/molecular level and progressively aggravates along with lithiation. Understanding the internal failure is of great importance for developing solutions of failure prevention and advanced anode materials. In this research, different internal failure processes of anode materials for lithium batteries are discussed. The progress on observation technologies of the anode failure is further summarized in order to understand their mechanisms of internal failure. On top of them, this review aims to summarize innovative methods to investigate the anode failure mechanisms and to gain new insights to develop advanced and stable anodes for lithium batteries.

     

  • loading
  • [1]
    J.M. Tarascon, M. Armand, Nature, 414 (2001) 359-367.
    [2]
    M. Armand, J.M. Tarascon, Nature, 451 (2008) 652-657.
    [3]
    J.B. Goodenough, K.S. Park, Journal of the American Chemical Society, 135 (2013) 1167-1176.
    [4]
    Y. Sun, N. Liu, Y. Cui, Nature Energy, 1 (2016) 16071.
    [5]
    S.B. Schougaard, Science, 353 (2016) 543-544.
    [6]
    J. Lim, Y.Y. Li, D.H. Alsem, H. So, S.C. Lee, P. Bai, D.A. Cogswell, X.Z. Liu, N. Jin, Y.S. Yu, N.J. Salmon, D.A. Shapiro, M.Z. Bazant, T. Tyliszczak, W.C. Chueh, Science, 353 (2016) 566-571.
    [7]
    Y. Li, K. Yan, H.-W. Lee, Z. Lu, N. Liu, Y. Cui, Nature Energy, 1 (2016) 15029.
    [8]
    L. Ma, M. Nie, J. Xia, J.R. Dahn, Journal of Power Sources, 327 (2016) 145-150.
    [9]
    J.N. Weker, N. Liu, S. Misra, J.C. Andrews, Y. Cui, M.F. Toney, Energy & Environmental Science, 7 (2014) 2771.
    [10]
    H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. McDowell, S.W. Lee, A. Jackson, Y. Yang, L. Hu, Y. Cui, Nat Nanotechnol, 7 (2012) 310-315.
    [11]
    X.H. Liu, J.W. Wang, S. Huang, F. Fan, X. Huang, Y. Liu, S. Krylyuk, J. Yoo, S.A. Dayeh, A.V. Davydov, S.X. Mao, S.T. Picraux, S. Zhang, J. Li, T. Zhu, J.Y. Huang, Nat Nanotechnol, 7 (2012) 749-756.
    [12]
    J.W. Choi, D. Aurbach, Nature Reviews Materials, 1 (2016) 16013.
    [13]
    M.J. Chon, V.A. Sethuraman, A. McCormick, V. Srinivasan, P.R. Guduru, Physical Review Letters, 107 (2011).
    [14]
    J. Xu, B. Liu, D. Hu, Scientific reports, 6 (2016) 21829.
    [15]
    I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, G. Yushin, Science, 334 (2011) 75-79.
    [16]
    Y. Zhang, H. Shi, D. Song, H. Zhang, X. Shi, L. Zhang, Journal of Power Sources, 327 (2016) 38-43.
    [17]
    C.K. Chan, H.L. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, Nature Nanotechnology, 3 (2008) 31-35.
    [18]
    A. Barre, B. Deguilhem, S. Grolleau, M. Gerard, F. Suard, D. Riu, Journal of Power Sources, 241 (2013) 680-689.
    [19]
    L.A. Berla, S.W. Lee, Y. Cui, W.D. Nix, Journal of Power Sources, 273 (2015) 41-51.
    [20]
    J. Cannarella, C.B. Arnold, Journal of Power Sources, 269 (2014) 7-14.
    [21]
    W.-J. Lai, M.Y. Ali, J. Pan, Journal of Power Sources, 245 (2014) 609-623.
    [22]
    L. Liang, F. Jiang, Y. Cao, G. Hu, K. Du, Z. Peng, Journal of Power Sources, 328 (2016) 422-432.
    [23]
    W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Energy Environ. Sci., 7 (2014) 513-537.
    [24]
    Z. Gong, Y. Yang, Energy & Environmental Science, 4 (2011) 3223.
    [25]
    V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy & Environmental Science, 4 (2011) 3243.
    [26]
    H.C. Wu, Z.Z. Guo, H.P. Wen, M.H. Yang, Journal of Power Sources, 146 (2005) 736-740.
    [27]
    T. Utsunomiya, O. Hatozaki, N. Yoshimoto, M. Egashira, M. Morita, Journal of Power Sources, 196 (2011) 8675-8682.
    [28]
    J. Vetter, P. Novak, M.R. Wagner, C. Veit, K.C. Moller, J.O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, Journal of Power Sources, 147 (2005) 269-281.
    [29]
    V. Agubra, J. Fergus, Materials, 6 (2013) 1310-1325.
    [30]
    S. Huang, F. Fan, J. Li, S. Zhang, T. Zhu, Acta Materialia, 61 (2013) 4354-4364.
    [31]
    Y. Yao, M.T. Mcdowell, I. Ryu, H. Wu, N. Liu, L. Hu, W.D. Nix, Y. Cui, Nano letters, 11 (2011) 2949-2954.
    [32]
    H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. Mcdowell, S.W. Lee, A. Jackson, Y. Yang, L. Hu, Nature Nanotechnology, 7 (2012) 310-315.
    [33]
    J.R. Szczech, J. Song, Energy & Environmental Science, 4 (2010) 56-72.
    [34]
    T. Song, J. Xia, J.H. Lee, H.L. Dong, M.S. Kwon, J.M. Choi, W. Jian, S.K. Doo, H. Chang, W.I. Park, Nano letters, 10 (2010) 1710-1716.
    [35]
    B. Li, X. Gao, J. Li, C. Yuan, Environmental science & technology, 48 (2014) 3047-3055.
    [36]
    U. Kasavajjula, C. Wang, A.J. Appleby, Journal of Power Sources, 163 (2007) 1003-1039.
    [37]
    J.L. Dong, H. Lee, M.H. Ryou, G.B. Han, J.N. Lee, J. Song, J. Choi, K.Y. Cho, M.L. Yong, J.K. Park, ACS applied materials & interfaces, 5 (2013) 12005-12010.
    [38]
    Y. Chen, M. Nie, B.L. Lucht, A. Saha, P.R. Guduru, A. Bose, ACS applied materials & interfaces, 6 (2014) 4678-4683.
    [39]
    C.K. Chan, H. Peng, G. Liu, K. Mcilwrath, X.F. Zhang, R.A. Huggins, Y.I. Cui, Nature Nanotechnology, 3 (2008) 31-35.
    [40]
    C.K. Chan, R.N. Patel, M.J. O'Connell, B.A. Korgel, Y. Cui, Acs Nano, 4 (2010) 1443-1450.
    [41]
    X. Zhou, L. Ma, J. Yang, B. Huang, Y. Zou, J. Tang, J. Xie, S. Wang, G. Chen, J Electroanal Chem, 698 (2013) 39-44.
    [42]
    U. Tanaka, T. Sogabe, H. Sakagoshi, M. Ito, T. Tojo, Carbon, 39 (2001) 931-936.
    [43]
    E. Rodriguez, I. Camean, R. Garcia, A.B. Garcia, Electrochimica Acta, 56 (2011) 5090-5094.
    [44]
    H. Li, R.Y. Tay, S.H. Tsang, W. Liu, E.H.T. Teo, Electrochimica Acta, 166 (2015) 197-205.
    [45]
    B. Duan, W. Wang, H. Zhao, A. Wang, M. Wang, K. Yuan, Z. Yu, Y. Yang, Electrochem Commun, 2 (2013) A47-A51.
    [46]
    S. Banerjee, G. Periyasamy, S.K. Pati, J Mater Chem A, 2 (2014) 3856-3864.
    [47]
    T. Zhang, L.J. Fu, J. Gao, Y.P. Wu, R. Holze, H.Q. Wu, Journal of Power Sources, 174 (2007) 770-773.
    [48]
    Y. Xu, Y. Zhu, Y. Liu, C. Wang, Adv Energy Mater, 3 (2013) 128-133.
    [49]
    Y. Xu, J. Guo, C. Wang, J Mater Chem, 22 (2012) 9562-9567.
    [50]
    Z. Shen, Y. Hu, Y. Chen, X. Zhang, K. Wang, R. Chen, Journal of Power Sources, 278 (2015) 660-667.
    [51]
    L. Liu, F. Xie, L. Jing, T. Zhao, T. Li, B.G. Choi, Journal of Power Sources, 321 (2016) 11-35.
    [52]
    W. Choi, J.Y. Lee, B.H. Jung, S.L. Hong, Journal of Power Sources, 136 (2004) 154-159.
    [53]
    G. Zheng, S.W. Lee, Z. Liang, H.W. Lee, K. Yan, H. Yao, H. Wang, W. Li, S. Chu, Y. Cui, Nature Nanotechnology, 9 (2014) 618-623.
    [54]
    T. Zhang, N. Imanishi, Y. Shimonishi, A. Hirano, J. Xie, Y. Takeda, O. Yamamoto, N. Sammes, Journal of the Electrochemical Society, 157 (2010) A214-A218.
    [55]
    C.P. Yang, Nature communications, 6 (2015).
    [56]
    W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.G. Zhang, Energy & Environmental Science, 7 (2013) 513-537.
    [57]
    M.H. Ryou, M.L. Yong, Y. Lee, M. Winter, P. Bieker, Advanced Functional Materials, 25 (2015) 834-841.
    [58]
    Q.C. Liu, J.J. Xu, S. Yuan, Z.W. Chang, D. Xu, Y.B. Yin, L. Li, H.X. Zhong, Y.S. Jiang, J.M. Yan, Advanced materials, 27 (2015) 5241-5247.
    [59]
    A.C. Kozen, C.F. Lin, A.J. Pearse, M.A. Schroeder, X. Han, L. Hu, S.B. Lee, G.W. Rubloff, M. Noked, Acs Nano, 9 (2015) 5884-5892.
    [60]
    L.-F. Cui, L. Hu, H. Wu, J.W. Choi, Y. Cui, Journal of The Electrochemical Society, 158 (2011) A592.
    [61]
    E.M.C. Jones, M.N. Silberstein, S.R. White, N.R. Sottos, Experimental Mechanics, 54 (2014) 971-985.
    [62]
    X.H. Liu, J.Y. Huang, Energy & Environmental Science, 4 (2011) 3844.
    [63]
    B. Koo, H. Kim, Y. Cho, K.T. Lee, N.S. Choi, J. Cho, Angewandte Chemie, 51 (2012) 8762-8767.
    [64]
    M.T. McDowell, I. Ryu, S.W. Lee, C. Wang, W.D. Nix, Y. Cui, Advanced materials, 24 (2012) 6034-6041.
    [65]
    S. Misra, N. Liu, J. Nelson, S.S. Hong, Y. Cui, M.F. Toney, Acs Nano, 6 (2012) 5465-5473.
    [66]
    M. Marinaro, M. Weinberger, M. Wohlfahrt-Mehrens, Electrochimica Acta, 206 (2016) 99-107.
    [67]
    R.L. Sacci, J.L. Banuelos, G.M. Veith, K.C. Littrell, Y.Q. Cheng, C.U. Wildgruber, L.L. Jones, A.J. Ramirez-Cuesta, G. Rother, N.J. Dudney, The Journal of Physical Chemistry C, 119 (2015) 9816-9823.
    [68]
    X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Chemical reviews, 117 (2017) 10403-10473.
    [69]
    A. Mukhopadhyay, A. Tokranov, K. Sena, X. Xiao, B.W. Sheldon, Carbon, 49 (2011) 2742-2749.
    [70]
    W.J. Zhang, Journal of Power Sources, 196 (2011) 13-24.
    [71]
    A. Mukhopadhyay, B.W. Sheldon, Progress in Materials Science, 63 (2014) 58-116.
    [72]
    H. Kim, G. Jeong, Y.U. Kim, J.H. Kim, C.M. Park, H.J. Sohn, Chemical Society reviews, 42 (2013) 9011-9034.
    [73]
    Z. Guo, C. Liu, B. Lu, J. Feng, Carbon, 150 (2019) 32-42.
    [74]
    P. Zhang, T. Yuan, Y. Pang, C. Peng, J. Yang, Z.-F. Ma, S. Zheng, Journal of The Electrochemical Society, 166 (2019) A5489-A5495.
    [75]
    C. Chen, Y. Wei, Z. Zhao, Y. Zou, D. Luo, Electrochimica Acta, 305 (2019) 65-71.
    [76]
    N. Iqbal, S. Lee, Journal of The Electrochemical Society, 165 (2018) A1961-A1970.
    [77]
    S.N. Hapuarachchi, Z. Sun, C. Yan, Advanced Sustainable Systems, 2 (2018).
    [78]
    V.A. Sethuraman, N. Van Winkle, D.P. Abraham, A.F. Bower, P.R. Guduru, Journal of Power Sources, 206 (2012) 334-342.
    [79]
    H. Tavassol, E.M.C. Jones, N.R. Sottos, A.A. Gewirth, Nat Mater, advance online publication (2016).
    [80]
    M.T. Mcdowell, I. Ryu, S.W. Lee, C. Wang, W.D. Nix, Y. Cui, Advanced materials, 24 (2012) 6034-6041.
    [81]
    A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G. Yushin, Nature Material, 9 (2010) 353-358.
    [82]
    N. Liu, W. Hui, M.T. Mcdowell, Y. Yan, C. Wang, C. Yi, Nano letters, 12 (2012) 3315-3321.
    [83]
    L. Hu, H. Wu, S.S. Hong, L. Cui, J.R. Mcdonough, S. Bohy, Y. Cui, Chem Commun, 47 (2011) 367-369.
    [84]
    L.F. Cui, R. Ruffo, C.K. Chan, H. Peng, Y. Cui, Nano letters, 9 (2009) 491-495.
    [85]
    L.F. Cui, L. Hu, J.W. Choi, Y. Cui, Acs Nano, 4 (2010) 3671-3678.
    [86]
    M. Pharr, Z. Suo, J.J. Vlassak, Nano letters, 13 (2013) 5570-5577.
    [87]
    F. Shi, Z. Song, P.N. Ross, G.A. Somorjai, R.O. Ritchie, K. Komvopoulos, Nature communications, 7 (2016) 11886.
    [88]
    N.P. Wagner, K. Asheim, F. Vullum-Bruer, A.M. Svensson, Journal of Power Sources, 437 (2019) 226884.
    [89]
    C. Yu, X. Chen, Z. Xiao, C. Lei, C. Zhang, X. Lin, B. Shen, R. Zhang, F. Wei, Nano letters, 19 (2019) 5124-5132.
    [90]
    C. Zhao, T. Wada, V. De Andrade, D. Gursoy, H. Kato, Y.-c.K. Chen-Wiegart, Nano energy, 52 (2018) 381-390.
    [91]
    J. Ryu, T. Chen, T. Bok, G. Song, J. Ma, C. Hwang, L. Luo, H.-K. Song, J. Cho, C. Wang, Nature communications, 9 (2018) 2924.
    [92]
    Z. Zheng, B. Chen, N. Fritz, Y. Gurumukhi, J. Cook, M.N. Ates, N. Miljkovic, P.V. Braun, P. Wang, Journal of The Electrochemical Society, 166 (2019) A2083-A2090.
    [93]
    D. Lyu, B. Ren, S. Li, Acta Mechanica, 230 (2019) 701-727.
    [94]
    D.E. Galvez-Aranda, J.M. Seminario, Journal of The Electrochemical Society, 165 (2018) A717-A730.
    [95]
    M.T. McDowell, S.W. Lee, J.T. Harris, B.A. Korgel, C. Wang, W.D. Nix, Y. Cui, Nano letters, 13 (2013) 758-764.
    [96]
    X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu, J.Y. Huang, Acs Nano, 6 (2012) 1522-1531.
    [97]
    S.W. Lee, M.T. Mcdowell, L.A. Berla, W.D. Nix, Y. Cui, Proceedings of the National Academy of Sciences, 109 (2012) 4080-4085.
    [98]
    Z. Zeng, N. Liu, Q. Zeng, S.W. Lee, W.L. Mao, Y. Cui, Nano Energy, 22 (2016) 105-110.
    [99]
    B. Key, R. Bhattacharyya, M. Morcrette, V. Seznec, J.M. Tarascon, C.P. Grey, Journal of the American Chemical Society, 131 (2009) 9239-9249.
    [100]
    J. Duay, K.W. Schroder, S. Murugesan, K.J. Stevenson, ACS applied materials & interfaces, 8 (2016) 17642-17650.
    [101]
    A. Bordes, E. De Vito, C. Haon, A. Boulineau, A. Montani, P. Marcus, Chemistry of Materials, 28 (2016) 1566-1573.
    [102]
    M.N. Obrovac, V.L. Chevrier, Chemical reviews, 114 (2014) 11444-11502.
    [103]
    T. Kim, S. Park, S.M. Oh, Journal of The Electrochemical Society, 154 (2007) A1112.
    [104]
    G. Bieker, M. Winter, P. Bieker, Phys Chem Chem Phys, 17 (2015) 8670-8679.
    [105]
    Q. Pang, A. Shyamsunder, B. Narayanan, C.Y. Kwok, L.A. Curtiss, L.F. Nazar, Nature Energy, 3 (2018) 783.
    [106]
    P. Zhang, J. Zhu, M. Wang, N. Imanishi, O. Yamamoto, Electrochem Commun, 87 (2018) 27-30.
    [107]
    F. Wu, Y.-X. Yuan, X.-B. Cheng, Y. Bai, Y. Li, C. Wu, Q. Zhang, Energy Storage Materials, 15 (2018) 148-170.
    [108]
    S.-H. Yu, X. Huang, J.D. Brock, H.D. Abruna, Journal of the American Chemical Society, (2019).
    [109]
    K. Shen, Z. Wang, X. Bi, Y. Ying, D. Zhang, C. Jin, G. Hou, H. Cao, L. Wu, G. Zheng, Adv Energy Mater, (2019) 1900260.
    [110]
    C. Brissot, M. Rosso, J.N. Chazalviel, P. Baudry, S. Lascaud, Electrochimica Acta, 43 (1998) 1569-1574.
    [111]
    X. Hua Liu, L. Zhong, L.Q. Zhang, A. Kushima, S.X. Mao, J. Li, Z.Z. Ye, J.P. Sullivan, J. Yu Huang, Appl Phys Lett, 98 (2011) 183107 - 183107-183103.
    [112]
    H. Ghassemi, M. Au, N. Chen, P.A. Heiden, Appl Phys Lett, 99 (2011) 123113 - 123113-123113.
    [113]
    Y. Li, Y. Li, A. Pei, K. Yan, Y. Sun, C.L. Wu, L.M. Joubert, R. Chin, A.L. Koh, Y. Yu, Science, 358 (2017) 506.
    [114]
    M.J. Zachman, Z. Tu, S. Choudhury, L.A. Archer, L.F. Kourkoutis, Nature, 560 (2018) 345.
    [115]
    C. Fang, Y. Zhang, J.Z. Lee, Y. Yang, F. Yang, J. Li, J. Alvarado, M.A. Schroeder, L. Yang, M. Cai, arXiv preprint arXiv:1811.01029, (2018).
    [116]
    X.R. Liu, X. Deng, R.R. Liu, H.J. Yan, Y.G. Guo, D. Wang, L.J. Wan, ACS applied materials & interfaces, 6 (2014) 20317-20323.
    [117]
    K. Ogata, E. Salager, C.J. Kerr, A.E. Fraser, C. Ducati, A.J. Morris, S. Hofmann, C.P. Grey, Nature communications, 5 (2014).
    [118]
    C. He, S. Wu, N. Zhao, C. Shi, E. Liu, J. Li, Acs Nano, 7 (2013) 4459-4469.
    [119]
    B. Wang, X. Li, X. Zhang, B. Luo, M. Jin, M. Liang, S.A. Dayeh, S.T. Picraux, L. Zhi, Acs Nano, 7 (2013) 1437-1445.
    [120]
    H. Jia, P. Gao, J. Yang, J. Wang, Y. Nuli, Z. Yang, Adv Energy Mater, 1 (2011) 1036-1039.
    [121]
    J. Hassoun, B. Scrosati, Angewandte Chemie, 49 (2010) 2371-2374.
    [122]
    Y.Q. Wang, L. Gu, Y.G. Guo, H. Li, X.Q. He, S. Tsukimoto, Y. Ikuhara, L.J. Wan, Journal of the American Chemical Society, 134 (2012) 7874-7879.
    [123]
    T.H. Hwang, M.L. Yong, B.S. Kong, J.S. Seo, J.W. Choi, Nano letters, 12 (2011) 802-807.
    [124]
    W. Hui, C. Yi, Nano Today, 7 (2012) 414-429.
    [125]
    M. Lebron-Colon, M. Meador, D. Lukco, F. Sola, J. Santos-Perez, L. McCorkle, Nanotechnology, 22 (2011) 455707.
    [126]
    S.J. An, J. Li, C. Daniel, D.L. Wood, Journal of The Electrochemical Society, 166 (2019) A1121-A1126.
    [127]
    S. Dalavi, P. Guduru, B.L. Lucht, Journal of the Electrochemical Society, 159 (2012).
    [128]
    J. Song, M. Zhou, R. Yi, T. Xu, M.L. Gordin, D. Tang, Z. Yu, M. Regula, D. Wang, Advanced Functional Materials, 24 (2015) 5904-5910.
    [129]
    A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G. Yushin, Nat Mater, 9 (2010) 353-358.
    [130]
    N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.W. Lee, W. Zhao, Y. Cui, Nat Nanotechnol, 9 (2014) 187-192.
    [131]
    Q. Xu, J.-Y. Li, J.-K. Sun, Y.-X. Yin, L.-J. Wan, Y.-G. Guo, Adv Energy Mater, (2016) 1601481.
    [132]
    J. Wu, H. Zeng, X. Li, X. Xiang, Y. Liao, Z. Xue, Y. Ye, X. Xie, Adv Energy Mater, 8 (2018) 1802430.
    [133]
    X. Shen, Y. Li, T. Qian, J. Liu, J. Zhou, C. Yan, J.B. Goodenough, Nature communications, 10 (2019) 900.
    [134]
    X. Wang, W. Zeng, L. Hong, W. Xu, H. Yang, F. Wang, H. Duan, M. Tang, H. Jiang, Nature Energy, 3 (2018) 227.
    [135]
    S. Chu, Y. Cui, N. Liu, Nature Materials, 16 (2016) 16-22.
    [136]
    W. Liu, Z. Chen, G. Zhou, Y. Sun, H.R. Lee, C. Liu, H. Yao, Z. Bao, Y. Cui, Advanced materials, 28 (2016) 3578-3583.
    [137]
    G.M. Koenig, I. Belharouak, H. Deng, Y.K. Sun, K. Amine, Chemistry of Materials, 23 (2016) 2863-2870.
    [138]
    S. Abada, G. Marlair, A. Lecocq, M. Petit, V. Sauvant-Moynot, F. Huet, Journal of Power Sources, 306 (2016) 178-192.
    [139]
    H.J. Kim, S. Choi, S.J. Lee, M.W. Seo, J.G. Lee, E. Deniz, Y.J. Lee, E.K. Kim, J.W. Choi, Nano letters, 16 (2016).
    [140]
    M. Ge, J. Rong, X. Fang, C. Zhou, Nano letters, 12 (2012) 2318-2323.
    [141]
    H. Wu, G. Zheng, N. Liu, T.J. Carney, Y. Yang, Y. Cui, Nano letters, 12 (2012) 904-909.
    [142]
    N. Nitta, F. Wu, J.T. Lee, G. Yushin, Materials Today, 18 (2015) 252-264.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (163) PDF downloads(26) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return