Ragne Marie Lilleby Helberg, Zhongde Dai, Luca Ansaloni, Liyuan Deng. PVA/PVP blend polymer matrix for hosting carriers in facilitated transport membranes: Synergistic enhancement of CO2 separation performance. Green Energy&Environment, 2020, 5(1): 59-68. doi: 10.1016/j.gee.2019.10.001
Citation: Ragne Marie Lilleby Helberg, Zhongde Dai, Luca Ansaloni, Liyuan Deng. PVA/PVP blend polymer matrix for hosting carriers in facilitated transport membranes: Synergistic enhancement of CO2 separation performance. Green Energy&Environment, 2020, 5(1): 59-68. doi: 10.1016/j.gee.2019.10.001

PVA/PVP blend polymer matrix for hosting carriers in facilitated transport membranes: Synergistic enhancement of CO2 separation performance

doi: 10.1016/j.gee.2019.10.001
  • CO2 separation performance in facilitated transport membranes has been reported depended not only on the CO2 carrier properties but also to a great extent on the polymeric matrix regarding the capacity of retaining water and carriers as well as the processability for coating defect-free ultra-thin films. In this study, the blends of hydrophilic polymers polyvinyl pyrrolidone (PVP) and polyvinyl alcohol (PVA) were studied to find an optimal polymer matrix to host carriers in facilitated transport membranes for enhanced CO2 separation. It is found out that the optimized blend is 50/50 PVA/PVP by weight, which shows a significant increase in the water uptake (from 63 to 84%) at equilibrium state compared to the neat PVA. Polyethyleneimine (PEI) was employed to provide sample carriers to evaluate the synergistic effect of PVA and PVP on the CO2 separation performance. A thin film composite (TFC) membrane of the optimized blend (50/50 PVA/PVP with 50 wt% PEI) was fabricated on polysulfone (PSf) porous support. The fabrication of the TFC membranes is simple and low cost, and CO2 permeance of the optimized blend membrane is nearly doubled with the CO2/N2 selectivity remained unchanged, showing great potential for industrial applications of the resulted membranes.

     

  • loading
  • [1]
    T.P. Senftle, E.A. Carter, Acc. Chem. Res. 50 (2017) 472-475.
    [2]
    M. Bui, C.S. Adjiman, A. Bardow, E.J. Anthony, A. Boston, S. Brown, P.S. Fennell, S. Fuss, A. Galindo, L.A. Hackett, J.P. Hallett, H.J. Herzog, G. Jackson, J. Kemper, S. Krevor, G.C. Maitland, M. Matuszewski, I.S. Metcalfe, C. Petit, G. Puxty, J. Reimer, D.M. Reiner, E.S. Rubin, S.A. Scott, N. Shah, B. Smit, J.P.M. Trusler, P. Webley, J. Wilcox, N. Mac Dowell, Energy Environ. Sci. 11 (2018) 1062-1176.
    [3]
    L. Deng, H. Kvamsdal, Green Energy Environ.. 1 (2016) 179.
    [4]
    S.E. Kentish, Ind. Eng. Chem. Res. 58 (2019) 12868-12875.
    [5]
    J. Wang, J. Luo, S. Feng, H. Li, Y. Wan, X. Zhang, Green Energy Environ.. 1 (2016) 43-61.
    [6]
    Z.D. Dai, S. Fabio, N.G. Marino, C. Riccardo, L.Y. Deng, Int. J. Greenhouse Gas Control 86 (2019) 191-200.
    [7]
    P. Bernardo, E. Drioli, G. Golemme, Ind. Eng. Chem. Res. 48 (2009) 4638-4663.
    [8]
    L.M. Robeson, J. Membr. Sci. 320 (2008) 390-400.
    [9]
    L.Y. Deng, T.J. Kim, M.B. Hagg, J. Membr. Sci. 340 (2009) 154-163.
    [10]
    L.Y. Deng, M.B. Hagg, Int. J. Greenhouse Gas Control 26 (2014) 127-134.
    [11]
    O.H. Leblanc, W.J. Ward, S.L. Matson, S.G. Kimura, J. Membr. Sci. 6 (1980) 339-343.
    [12]
    G.J. Francisco, A. Chakma, X. Feng, J. Membr. Sci. 303 (2007) 54-63.
    [13]
    W. S. Winston Ho, Membranes Comprising Salts of Aminoacids in Hydrophilic Polymers: U.S. Patent 5,611,843[P]. 1997-3-18.
    [14]
    Z.D. Dai, J. Deng, L. Ansaloni, S. Janakiram, L.Y. Deng, J. Membr. Sci. 578 (2019) 61-68.
    [15]
    T.-J. Kim, B. Li, M.-B. Hagg, J. Polym. Sci. Part B Polym. Phys. 42 (2004) 4326-4336.
    [16]
    W. S. Winston Ho, Membranes Comprising Aminoacid Salts in Polyamine Polymers and Blends: U.S. Patent 6,099,621[P]. 2000-8-8.
    [17]
    Y. Cai, Z. Wang, C. Yi, Y. Bai, J. Wang, S. Wang, J. Membr. Sci. 310 (2008) 184-196.
    [18]
    H. Matsuyama, A. Terada, T. Nakagawara, Y. Kitamura, M. Teramoto, J. Membr. Sci. 163 (1999) 221-227.
    [19]
    M. Saeed, L.Y. Deng, J. Membr. Sci. 494 (2015) 196-204.
    [20]
    M. Saeed, S. Rafiq, L.H. Bergersen, L.Y. Deng, Sep. Purif. Technol. 179 (2017) 550-560.
    [21]
    L. Ansaloni, Y.N. Zhao, B.T. Jung, K. Ramasubramanian, M.G. Baschetti, W.S.W. Ho, J. Membr. Sci. 490 (2015) 18-28.
    [22]
    A. Mondal, B. Mandal, J. Membr. Sci. 460 (2014) 126-138.
    [23]
    C. Yi, Z. Wang, M. Li, J. Wang, S. Wang, Desalination 193 (2006) 90-96.
    [24]
    Y.F. Li, Q.P. Xin, H. Wu, R.L. Guo, Z.Z. Tian, Y. Liu, S.F. Wang, G.W. He, F.S. Pan, Z.Y. Jiang, Energy Environ. Sci. 7 (2014) 1489-1499.
    [25]
    R.W. Baker, B.T. Low, Macromolecules 47 (2014) 6999-7013.
    [26]
    S. Mallakpour, V. Behranvand, in Hybrid Polymer Composite Materials, eds. Thakur, V. K.; Thakur, M. K.; Gupta, R. K., Woodhead Publishing, 2017, pp. 263-289.
    [27]
    M. Hayama, K.-I. Yamamoto, F. Kohori, K. Sakai, J. Membr. Sci. 234 (2004) 41-49.
    [28]
    N. Bolong, A.F. Ismail, M.R. Salim, in Sustainable Membrane Technology for Energy, Water, and Environment, 2012, pp. 1-10.
    [29]
    V.G. Kadajji, G.V. Betageri, Polymers 3 (2011) 1972-2009.
    [30]
    J. Suh, H.J. Paik, B.K. Hwang, Bioorg. Chem. 22 (1994) 318-327.
    [31]
    Z.D. Dai, L. Ansaloni, D.L. Gin, R.D. Noble, L.Y. Deng, J. Membr. Sci. 523 (2017) 551-560.
    [32]
    M. Mulder, Basic Principles of Membrane Technology, Kluwer, Dordrecht, second ed., 1996.
    [33]
    Z. Dai, L. Ansaloni, L. Deng, Green Energy Environ.. 1 (2016) 102-128.
    [34]
    Z.-H. Ping, Q.T. Nguyen, J. Neel, Macromol. Chem. Phys. 190 (1989) 437-448.
    [35]
    A. El-Hag Ali, H.A. Shawky, H.A. Abd El Rehim, E.A. Hegazy, Eur. Polym. J. 39 (2003) 2337-2344.
    [36]
    S.N. Cassu, M.I. Felisberti, Polymer 38 (1997) 3907-3911.
    [37]
    Y.Y. Tan, G. Challa, Polymer 17 (1976) 739-740.
    [38]
    D.T. Turner, A. Schwartz, Polymer 26 (1985) 757-762.
    [39]
    L.Y. Deng, M.B. Hagg, J. Membr. Sci. 363 (2010) 295-301.
    [40]
    M. Saeed, L.Y. Deng, Int. J. Greenhouse Gas Control 53 (2016) 254-262.
    [41]
    X. Zhang, K. Takegoshi, K. Hikichi, Polymer 33 (1992) 712-717.
    [42]
    Z. Dai, J. Deng, Q. Yu, R.M.L. Helberg, S. Janakiram, L. Ansaloni, L. Deng, ACS Appl. Mater Interf. 11 (2019) 10874-10882
    [43]
    G.N. Hemantha Kumar, J. Lakshmana Rao, N.O. Gopal, K.V. Narasimhulu, R.P.S. Chakradhar, A. Varada Rajulu, Polymer 45 (2004) 5407-5415.
    [44]
    S.H. Wen, F.Y. Zheng, M.W. Shen, X.Y. Shi, J. Appl. Polym. Sci. 128 (2013) 3807-3813.
    [45]
    P. Srinivasa Rao, B. Smitha, S. Sridhar, A. Krishnaiah, Sep. Purif. Technol. 48 (2006) 244-254.
    [46]
    J.N. Shen, C.C. Yu, G.N. Zeng, B. Van Der Bruggen, Int. J. Mol. Sci. 14 (2013) 3621-3638.
    [47]
    S. Ben Hamouda, Q.T. Nguyen, D. Langevin, S. Roudesli, C. R. Chim. 13 (2010) 372-379.
    [48]
    M.S.A. Rahaman, L. Zhang, L.-H. Cheng, X.-H. Xu, H.-L. Chen, RSC Adv. 2 (2012) 9165-9172.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (298) PDF downloads(29) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return