Yu-Mei Liu, Yan Zhou, Wen-Qiang Gong, Zhang-Min Li, Chao-Li Wang, Duan-Jian Tao. Highly efficient synthesis of 1-methoxy-2-propanol using ionic liquid catalysts in a micro-tubular circulating reactor. Green Energy&Environment, 2020, 5(2): 147-153. doi: 10.1016/j.gee.2019.09.001
Citation: Yu-Mei Liu, Yan Zhou, Wen-Qiang Gong, Zhang-Min Li, Chao-Li Wang, Duan-Jian Tao. Highly efficient synthesis of 1-methoxy-2-propanol using ionic liquid catalysts in a micro-tubular circulating reactor. Green Energy&Environment, 2020, 5(2): 147-153. doi: 10.1016/j.gee.2019.09.001

Highly efficient synthesis of 1-methoxy-2-propanol using ionic liquid catalysts in a micro-tubular circulating reactor

doi: 10.1016/j.gee.2019.09.001
  • The catalysis of ionic liquids (ILs) in the traditional stirred reactor suffers from insufficient mass and heat transfer, which always needs a long reaction time and results in a low reaction rate. In this work, highly efficient synthesis of 1-methoxy-2-propanol via the alcoholysis reaction of propylene oxide (PO) with methanol was proposed and achieved by the combination of micro-tubular circulating reactor with the IL [N4444][Buty] catalyst. Compared with the stirred reactor, the rate of alcoholysis reaction in a micro-tubular circulating reactor was found to be significantly improved. The reaction time was remarkably shortened to 20 min from 180 min as well as the yield of 1-methoxy-2-propanol reached 92%. Moreover, the kinetic study further demonstrated that the main reaction rate to 1-methoxy-2-propanol (K1) was about 20 times larger than the side reaction rate to byproduct 2-methoxy-1-propanol (K2) in the temperature range of 363–383 K. Such combination of micro-tubular circulating reactor with IL catalysts is believed to be a class of effective process intensification technique for highly efficient synthesis of 1-methoxy-2-propanol.

     

  • loading
  • [1]
    N. V. Plechkova and K. R. Seddon, Chem. Soc. Rev. 37 (2008) 123-150.
    [2]
    W. Kong, Y. Liu, F. Liu. Ind. Eng. Chem. Res. 57 (2018) 14080-14087.
    [3]
    S. Zhang, Y. Wang, H. He, F. Huo, Y. Lu, X. Zhang, K. Dong, Green Energy Environ 2 (2017) 329- 330.
    [4]
    W. Hui, Y. Zhou, Y. Dong, Z. J. Cao, F. Q. He, M. Z. Cai, D. J. Tao, Green Energy Environ. 4 (2019) 49-55.
    [5]
    Y. Liu, S. Li, X. Li, L. Mao, F. Liu. Ind. Eng. Chem. Res. 57 (2018) 15638-15646.
    [6]
    K. Dong, X. Liu, H. Dong, X. Zhang, S. Zhang, Chem. Rev. 117 (2017) 6636-6695.
    [7]
    R. P. Swatloski, S. K. Spear, J. D. H. And and R. D. Rogers, J. Am. Chem. Soc. 124 (2002) 4974-4975.
    [8]
    Z. C. Liu, X. H. Meng, R. Zhang, C. M. Xu, H. Dong, Y. F. Hu, AIChE J. 60 (2014) 2244-2253.
    [9]
    M. N. Timofeeva, V. N. Panchenko, M. M. Matrosova, A. S. Andreev, S. V. Tsybulya, A. Gil and M. A. Vicente, Ind. Eng. Chem. Res. 53 (2014) 13565-13574.
    [10]
    S. Chen, R. Liu, Y. Li, R. Zhang, Z. Cong, H. Tang, C. Qiao, S. Zhang, Catal. Commun. 96 (2017) 69-73.
    [11]
    D. J. Tao, F. Ouyang, Z. M. Li, N. Hu, Z. Yang, X. S. Chen, Ind. Eng. Chem. Res. 52 (2013) 17111-17116.
    [12]
    M. N. Timofeeva, Appl. Catal. B-Environ. 102 (2011) 433-440.
    [13]
    J. Zhang, Q. Cai, J. Zhao, S. Zang, RSC. Adv. 8 (2018) 4478-4482.
    [14]
    Timofeeva, N. M., Panchenko, N. V., J. W. Jun, Hasan, Zubair, Kikhtyanin, V. O., Prosvirin, Micropor. Mesopor. Mat. 165 (2013) 84-91.
    [15]
    X. Zhang, W. Cui, W. Han, Y. Zhang, S. Liu, M. Wei, Y. Chang, R. Hu, React. Kinet. Catal. Lett. 98 (2009) 349-353.
    [16]
    K. F. Jensen, AIChE J. 63 (2017) 858-869.
    [17]
    M. P. C. Marques, F. Pedro, Molecules 16 (2011) 8368-8401.
    [18]
    C. Zhang, J. Zhang, G. Luo, J. Flow. Chem. 6(2016) 309−314.
    [19]
    C. Ye, M. Dang, C. Yao, G. Chen, Y. Quan, Chem. Eng. J. 225(2013) 120−127.
    [20]
    X. Pei, W. Kai, P. Wang, X. Yang, G. Luo, AIChE J. 63 (2017) 1002−1009.
    [21]
    Y. Zhao, C. Yao, G. Chen, Y. Quan, Green Chem. 15 (2013) 446−452.
    [22]
    F. F. Chen, D. Yan, X. Y. Sang, Z. Yan, D. J. Tao, Acta. Phys. Chim. Sin. 32 (2016) 605−610.
    [23]
    Y. Song, J. Song, M. Shang, W. Xu, S. Liu, B. Wang, Q. Lu, Y. Su, Chem. Eng. J. 353 (2018) 769−780.
    [24]
    C. Li, C. Zhu, Y. Ma, D. Liu, X. Gao, Int. J. Heat Mass. Tran. 78 (2014) 1055−1059.
    [25]
    D. Bothe, A. Lojewski, H. J. Warnecke, AIChE J. 56 (2010) 1406−1415.
    [26]
    F. Zhou, H. Liu, Z. Wen, B. Zhang, G. Chen, Ind. Eng. Chem. Res. 57 (2018) 11288−11298.
    [27]
    M. M. Zainol, N. A. S. Amin, M. Asmadi, Renew Energ. 130 (2018) 547−557.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (108) PDF downloads(9) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return