Zhiwei Lu, Xiaochao Xu, Yujuan Chen, Xiaohui Wang, Li Sun, Kelei Zhuo. Nitrogen and sulfur co-doped graphene aerogel with hierarchically porous structure for high-performance supercapacitors. Green Energy&Environment, 2020, 5(1): 69-75. doi: 10.1016/j.gee.2019.06.001
Citation: Zhiwei Lu, Xiaochao Xu, Yujuan Chen, Xiaohui Wang, Li Sun, Kelei Zhuo. Nitrogen and sulfur co-doped graphene aerogel with hierarchically porous structure for high-performance supercapacitors. Green Energy&Environment, 2020, 5(1): 69-75. doi: 10.1016/j.gee.2019.06.001

Nitrogen and sulfur co-doped graphene aerogel with hierarchically porous structure for high-performance supercapacitors

doi: 10.1016/j.gee.2019.06.001
  • Supercapacitors with unique performance have been widely utilized in many fields. Herein, we report a nitrogen and sulfur co-doped graphene aerogel (N/S-GA-2) prepared using a low toxic precursor for high-performance supercapacitors. The as-obtained material possesses a hierarchically porous structure and a large number of electrochemical active sites. At a current density of 1 A g−1, the specific capacitance of the N/S-GA-2 for supercapacitors with the ionic liquid as the electrolyte is 169.4 F g−1, and the corresponding energy density is 84.5 Wh kg−1. At a power density of 8.9 kW kg−1, the energy density can reach up to 75.7 Wh kg−1, showing that the N/S-GA-2 has an excellent electrochemical performance. Consequently, the N/S-GA-2 can be used as a promising candidate of electrode materials for supercapacitors with high power density and high energy density.

     

  • These authors contributed equally to this work.
  • loading
  • [1]
    Q. Wang, J. Yan, Z. Fan, Energy & Environmental Science 9 (2016) 729-762.
    [2]
    C. Liu, F. Li, L.P. Ma, H.M. Cheng, Advanced Materials 22 (2010) E28-E62.
    [3]
    Q. Long, W. Chen, H. Xu, X. Xiong, Y. Jiang, F. Zou, X. Hu, Y. Xin, Z. Zhang, Y. Huang, Energy & Environmental Science 6 (2013) 2497-2504.
    [4]
    G.A. Snook, P. Kao, A.S. Best, Journal of Power Sources 196 (2011) 1-12.
    [5]
    K. Zhang, L.L. Zhang, X.S. Zhao, J. Wu, Chemistry of Materials 22 (2010) 1392-1401.
    [6]
    P. Simon, Y. Gogotsi, Nature Materials 7 (2008) 845-854.
    [7]
    J.R. Miller, P. Simon, Science 321 (2008) 651-652.
    [8]
    B. Ding, D. Guo, Y. Wang, X. Wu, Z. Fan, Journal of Power Sources 398 (2018) 113-119.
    [9]
    Z. Yanwu, M. Shanthi, M.D. Stoller, K.J. Ganesh, C. Weiwei, P.J. Ferreira, P. Adam, R.M. Wallace, K.A. Cychosz, T. Matthias, Science 332 (2011) 1537-1541.
    [10]
    Y. Sun, Q. Wu, G. Shi, Energy & Environmental Science 4 (2011) 1113-1132.
    [11]
    Y. Huang, W. Chen, H. Li, M. Zhu, F. Liu, Q. Xue, Z. Pei, Z. Wang, L. Wang, Y. Huang, Green Energy & Environment 3 (2018) 86-96.
    [12]
    J. Kim, L.J. Cote, J. Huang, Accounts of Chemical Research 45 (2012) 1356-1364.
    [13]
    C. Cheng, D. Li, Advanced Materials 25 (2013) 13-30.
    [14]
    C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Nano Letters 10 (2010) 4863-4868.
    [15]
    F. Liu, S. Song, D. Xue, H. Zhang, Advanced Materials 24 (2012) 1089-1094.
    [16]
    Z. Niu, J. Chen, H.H. Hng, J. Ma, X. Chen, Advanced Materials 24 (2012) 4144-4150.
    [17]
    J.J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B.G. Sumpter, A. Srivastava, M. Conway, A.L.M. Reddy, J. Yu, R. Vajtai, Nano Letters 11 (2011) 1423-1427.
    [18]
    Y. Yoon, K. Lee, S. Kwon, S. Seo, H. Yoo, S. Kim, Y. Shin, Y. Park, D. Kim, J.Y. Choi, Acs Nano 8 (2014) 4580-4590.
    [19]
    Q. Shao, T. Jie, Y. Lin, L. Jing, F. Qin, J. Yuan, L.C. Qin, Journal of Power Sources 278 (2015) 751-759.
    [20]
    Y. Xu, K. Sheng, C. Li, G. Shi, Acs Nano 4 (2010) 4324-4330.
    [21]
    W. Zhang, C. Xu, C. Ma, G. Li, Y. Wang, K. Zhang, F. Li, C. Liu, H.M. Cheng, Y. Du, Advanced Materials 29 (2017) 1701677.
    [22]
    L. Yan, J. Yu, J. Houston, N. Flores, H. Luo, Green Energy & Environment 2 (2017) 84-99.
    [23]
    C. Long, D. Qi, T. Wei, J. Yan, L. Jiang, Z. Fan, Advanced Functional Materials 24 (2014) 3953-3961.
    [24]
    X. Yu, H.S. Park, Carbon 77 (2014) 59-65.
    [25]
    J. Han, L.L. Zhang, S. Lee, J. Oh, K.S. Lee, J.R. Potts, J. Ji, X. Zhao, R.S. Ruoff, S. Park, Acs Nano 7 (2013) 19-26.
    [26]
    L.F. Chen, Z.H. Huang, H.W. Liang, H.L. Gao, S.H. Yu, Advanced Functional Materials 24 (2015) 5104-5111.
    [27]
    P.F. Fulvio, J.S. Lee, R.T. Mayes, X. Wang, S.M. Mahurin, S. Dai, Physical Chemistry Chemical Physics Pccp 13 (2011) 13486-13491.
    [28]
    S. Wang, E. Iyyamperumal, A. Roy, Y. Xue, D. Yu, L. Dai, Angewandte Chemie International Edition 50 (2011) 11756-11760.
    [29]
    D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, N.K. Kodiweera, P.E. Stallworth, S. Greenbaum, T.J. Bandosz, Carbon 47 (2009) 1576-1584.
    [30]
    X. Yu, Y. Kang, H.S. Park, Carbon 101 (2016) 49-56.
    [31]
    N. Phattharasupakun, J. Wutthiprom, N. Ma, P. Suktha, M. Sawangphruk, Journal of the Electrochemical Society 165 (2018) A1430-A1439.
    [32]
    X.L. Su, L. Fu, M.Y. Cheng, J.H. Yang, X.X. Guan, X.C. Zheng, Applied Surface Science 426 (2017) 924-932.
    [33]
    Z. Cheng, D. Yida, H. Wenbin, Q. Jinli, Z. Lei, Z. Jiujun, Chemical Society Reviews 44 (2015) 7484-7539.
    [34]
    Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, R.B. Kaner, Chemical Reviews 118 (2018) 9233-9280.
    [35]
    S. Pohlmann, C. Ramirez-Castro, A. Balducci, Journal of The Electrochemical Society 162 (2015) A5020-A5030.
    [36]
    M. Watanabe, M.L. Thomas, S. Zhang, K. Ueno, T. Yasuda, K. Dokko, Chemical Reviews 117 (2017) 7190 -7239.
    [37]
    Z. Lu, Y. Chen, Z. Liu, A. Li, D. Sun, K. Zhuo, RSC Advances 8 (2018) 18966-18971.
    [38]
    C. Qing, H. Yue, H. Chuangang, C. Huhu, Z. Zhipan, S. Huibo, Q. Liangti, Physical Chemistry Chemical Physics 16 (2014) 19307-19313.
    [39]
    M. Armand, F. Endres, D.R. Macfarlane, H. Ohno, B. Scrosati, Nature Materials 8 (2009) 621-629.
    [40]
    T. Wang, L.X. Wang, D.L. Wu, W. Xia, D.Z. Jia, Scientific Reports 5 (2015) 9591.
    [41]
    L. Cheng, Y. Hu, D. Qiao, Y. Zhu, H. Wang, Z. Jiao, Electrochimica Acta 259 (2018) 587-597.
    [42]
    H.L. Poh, P. Simek, Z. Sofer, M. Pumera, ACS Nano 6 (2013) 5262-5272.
    [43]
    E. Bi, H. Chen, X. Yang, W. Peng, M. Gratzel, L. Han, Energy & Environmental Science 7 (2014) 2637-2641.
    [44]
    Y. Li, G. Wang, T. Wei, Z. Fan, P. Yan, Nano Energy 19 (2016) 165-175.
    [45]
    M.-C. Hsiao, S.-H. Liao, M.-Y. Yen, P.-I. Liu, N.-W. Pu, C.-A. Wang, C.-C.M. Ma, ACS Applied Materials & Interfaces 2 (2010) 3092-3099.
    [46]
    H. Su, H. Zhang, F. Liu, F. Chun, B. Zhang, X. Chu, H. Huang, W. Deng, B. Gu, H. Zhang, Chemical Engineering Journal (2017) 73-81.
    [47]
    Z. Long, Y. Xi, Z. Fan, L. Guankui, Z. Tengfei, L. Kai, Z. Yawei, H. Yi, M. Yanfeng, Z. Mingtao, Journal of the American Chemical Society 135 (2013) 5921-5929.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (181) PDF downloads(27) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return