Junqi Tian, Ke Zhang, Wei Wang, Fu Wang, Jianming Dan, Shengchao Yang, Jinli Zhang, Bin Dai, Feng Yu. Enhanced selective catalytic reduction of NO with NH3 via porous micro-spherical aggregates of Mn–Ce–Fe–Ti mixed oxide nanoparticles. Green Energy&Environment, 2019, 4(3): 311-321. doi: 10.1016/j.gee.2019.05.001
Citation: Junqi Tian, Ke Zhang, Wei Wang, Fu Wang, Jianming Dan, Shengchao Yang, Jinli Zhang, Bin Dai, Feng Yu. Enhanced selective catalytic reduction of NO with NH3 via porous micro-spherical aggregates of Mn–Ce–Fe–Ti mixed oxide nanoparticles. Green Energy&Environment, 2019, 4(3): 311-321. doi: 10.1016/j.gee.2019.05.001

Enhanced selective catalytic reduction of NO with NH3 via porous micro-spherical aggregates of Mn–Ce–Fe–Ti mixed oxide nanoparticles

doi: 10.1016/j.gee.2019.05.001
  • We rationally designed a high performance denitration (De-NOx) catalyst based on a micrometer-sized spherical Mn–Ce–Fe–Ti (CP-SD) catalyst for selective catalytic reduction (SCR). This was prepared by a co-precipitation and spray drying (CP-SD) method. The catalyst was systematically characterized, and its morphological structure and surface properties were identified. Compare with conventional Mn–Ce–Fe–Ti (CP) catalysts, the Mn–Ce–Fe–Ti (CP-SD) catalyst had superior surface-adsorbed oxygen leading to enhanced “fast NH3-SCR” reaction. The as-obtained Mn–Ce–Fe–Ti (CP-SD) catalyst offered excellent NO conversion and N2 selectivity of 100.0% and 84.8% at 250 °C, respectively, with a gas hourly space velocity (GHSV) of 40,000 h−1. The porous micro-spherical structure provides a larger surface area and more active sites to adsorb and activate the reaction gases. In addition, the uniform distribution and strong interaction of manganese, iron, cerium, and titanium oxide species improved H2O and SO2 resistance. The results showed that the Mn–Ce–Fe–Ti (CP-SD) catalyst could be used prospectively as a denitration (De-NOx) catalyst.

     

  • • Three-dimensional porous micro-spherical aggregates of Mn-Ce-Fe-Ti mixed metal oxides were synthesized in large quantities via spray drying method and used as low-temperature denitration catalyst for selective catalytic reduction of NO with NH3.
    The authors contributed equally to this work.
  • loading
  • [1]
    D. Zhao, F. Yu, A. Zhou, C. Ma, B. Dai, High-efficiency removal of NOx using dielectric barrier discharge nonthermal plasma with water as an outer electrode, Plasma Sci. Technol. 20 (2018) 014020.
    [2]
    Q. Shen, L. Zhang, N. Sun, H. Wang, L. Zhong, C. He, W. Wei, Y. Sun, Hollow MnOx-CeO2 mixed oxides as highly efficient catalysts in NO oxidation, Chem. Eng. J. 322 (2017) 46-55.
    [3]
    K. Zha, L. Kang, C. Feng, L. Han, H. Li, T. Yan, P. Maitarad, L. Shi, D. Zhang, Improved NOx reduction in the presence of alkalimetals by using hollandite Mn-Ti oxide promoted Cu-SAPO-34 catalysts, Environ. Sci. Nano, 5 (2018) 1408-1419.
    [4]
    X. Hu, L. Huang, J. Zhang, H. Li, K. Zha, L. Shi, D. Zhang, Facile and template-free fabrication of mesoporous 3D nanosphere-like MnxCo3-xO4 as highly effective catalysts for low temperature SCR of NOx with NH3, J. Mater. Chem. A. 2018, DOI; 10.1039/C7TA08000J.
    [5]
    L. Chen, J. Li, M. Ge, DRIFT Study on Cerium-Tungsten/Titiania Catalyst for Selective Catalytic Reduction of NOx with NH3, Environ. Sci. Technol. 44 (2010) 9590-9596.
    [6]
    Q. Li, H. Yang, F. Qiu, X. Zhang, Promotional effects of carbon nanotubes on V2O5/TiO2 for NOx removal, J. hazard. Mater. 192 (2011) 915-921.
    [7]
    Z. Liu, F. Xu, Z. Zhou, Y. Feng, J. Li, Ce-Sn binary oxide catalyst for the selective catalytic reduction of NOx by NH3 Appl. Surf. Sci. 428 (2018) 526-533.
    [8]
    D. Meng, W. Zhan, Y. Guo, Y. L. Guo, L. Wang, G. Lu, A highly effective catalyst of Sm-MnOx for the NH3-SCR of NOx at low temperature: the promotional role of Sm and its catalytic performance, ACS Catal. 5 (2015) 5973-5983.
    [9]
    L. Dong, Y. Fan, W. Ling, C. Yang, B. Huang, Effect of Ce/Y addition on low-temperature SCR activity and SO2 and H2O resistance of MnOx/ZrO2/MWCNTs catalysts, Catalysts, 7 (2017) 181-195.
    [10]
    S. Andreoli, F. A. Deorsola, C. Galletti, R. Pirone, Nanostructured MnOx catalysts for low-temperature NOx SCR, Chem. Eng. J. 278 (2015) 174-182.
    [11]
    J. L. Xie, Z. B. Fu, F. He, D. Fang, Low temperature selective catalytic reduction of NOx with NH3 over MnOx/TiO2 catalyst, Appl. Mech. Mater. 295 (2013) 364-369.
    [12]
    L. Singoredjo, R. Korver, F. Kapteijn, J. Moulijn, Alumina supported manganese oxides for the low-temperature selective catalytic reduction of nitric oxide with ammonia, Appl. Catal. B: Environ. 1 (1992) 297-316.
    [13]
    G. Gao, J. Shi, C. Liu, C. Gao, Z. Fan, C. Niu, Mn/CeO2 catalysts for SCR of NOx with NH3: comparative study on the effect of supports on low-temperature catalytic activity, Appl. Surf. Sci. 411 (2017) 338-346.
    [14]
    C. Liu, G. Gao, J. W. Shi, C. He, G. Li, N. Bai, C. Niu, MnOx-CeO2 shell-in-shell microspheres for NH3-SCR de-NOx at low temperature, Catal. Commun. 86 (2016) 36-40.
    [15]
    S. Yang, Y. Guo, H. Chang, L. Ma, Y. Peng, Z. Qu, N. Yan, C. Wang, J. Li, Novel effect of SO2 on the SCR reaction over CeO2: Mechanism and significance, Appl. Catal. B: Environ. 136 (2013) 19-28.
    [16]
    X. Yao, T. Kong, L. Chen, S. Ding, F. Yang, L. Dong, Enhanced low-temperature NH3-SCR performance of MnOx/CeO2 catalysts by optimal solvent effect, Appl. Surf. Sci. 420 (2017) 407-415.
    [17]
    Z. Liu, J. Zhu, J. Li, L. Ma, S. I. Woo, Novel Mn-Ce-Ti mixed-oxide catalyst for the selective catalytic reduction of NOx with NH3, ACS appl. Mater. Interface, 6 (2014) 14500-14508.
    [18]
    Y. Wang, X. Li, L. Zhan, C. Li, W. Qiao, L. Ling, Effect of SO2 on Activated Carbon Honeycomb Supported CeO2-MnOx Catalyst for NO Removal at Low Temperature, Ind. Eng. Chem. Res. 54 (2015) 2274-2278.
    [19]
    S. Yang, S. Xiong, Y. Liao, X. Xiao, F. Qi, Y. Peng, Y. Fu, W. Shan, J. Li, Mechanism of N2O formation during the low-temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel, Environ. Sci. Tech. 48 (2014) 10354-10362.
    [20]
    S. Yang, F. Qi, S. Xiong, H. Dang, Y. Liao, P. K. Wong, J. Li, MnOx supported on Fe-Ti spinel: A novel Mn based low temperature SCR catalyst with a high N2 selectivity, Appl. Catal. B: Environ. 181 (2016) 570-580.
    [21]
    Z. Chen, F. Wang, H. Li, Q. Yang, L. Wang, X. Li, Low-temperature selective catalytic reduction of NOx with NH3 over Fe-Mn mixed-oxide catalysts containing Fe3Mn3O8 phase, Ind. Eng. Chem. Res. 51 (2011) 202-212.
    [22]
    Q. Xu, R. Su, L. Cao, Y. Li, C. Yang, Y. Luo, J. Street, P. Jiao, L. Cai, Facile preparation of high-performance Fe-doped Ce-Mn/TiO2 catalysts for the low-temperature selective catalytic reduction of NOx with NH3, RSC Adv. 7 (2017) 48785-48792.
    [23]
    K. Zha, S. Cai, H. Hu, H. Li, T. Yan, L. Shi, D. Zhang, Ce-Sn binary oxide catalyst for the selective catalytic reduction of NOx by NH3, J. Phys. Chem. C, 121 (2017) 25243-25254.
    [24]
    F. Yu, J. Zhang, Y. Yang, G. Song, Up-scalable synthesis, structure and charge storage properties of porous microspheres of LiFePO4@C nanocomposites, J. Mater. Chem. 19 (2009) 9121-9125.
    [25]
    F. Yu, S. Ge, B. Li, G. Sun, R. Mei, L. Zheng, Three-dimensional porous LiFePO4: Design, architectures and high performance for lithium ion batteries, Curr. Inorg. Chem. 2 (2012) 194-212.
    [26]
    F. Yu, P. Qi, Y. An, G. Wang, L. Xia, M. Zhu, B. Dai, Up-Scaled Microspherical Aggregates of LiFe0.4V0.4PO4/C Nanocomposites as Cathode Materials for High-Rate Li-Ion Batteries, Energy Technol. 3 (2015) 496-502.
    [27]
    E. Lim, Y.J. Kim, J.H. Kim, T. Ryu, S. Lee, B.K. Cho, I.-S. Nam, J.W. Choung, S. Yoo, NO oxidation activity of Ag-doped perovskite catalysts, J. Catal. 319 (2014) 182-193.
    [28]
    R.-t. Guo, Q.-l. Chen, H.-l. Ding, Q.-s. Wang, W.-g. Pan, N.-z. Yang, C.-z. Lu, Preparation and characterization of CeOx@ MnOx core-shell structure catalyst for catalytic oxidation of NO, Catal. Commun. 69 (2015) 165-169.
    [29]
    F. Yu, J. Zhang, Y. Yang, G. Song, Porous micro-spherical aggregates of LiFePO4/C nanocomposites: A novel and simple template-free concept and synthesis via sol-gel-spray drying method, J. Power Sources, 195 (2010) 6873-6878.
    [30]
    M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic-inorganic nanocomposite materials, Chem. Mater. 13 (2001) 3169-3183.
    [31]
    F. Yu, S. H. Lim, Y. Zhen, Y. An, J. Lin, Optimized electrochemical performance of three-dimensional porous LiFePO4/C microspheres via microwave irradiation assisted synthesis, J. Power Sources, 271 (2014) 223-230.
    [32]
    Y. Wang, C. Ge, L. Zhan, C. Li, W. Qiao, L. Ling, MnOx-CeO2/Activated Carbon Honeycomb Catalyst for Selective Catalytic Reduction of NO with NH3 at Low Temperatures, Ind. Eng. Chem. Res. 51 (2012) 11667-11673.
    [33]
    J. Chen, B. Zhu, Y. Sun, S. Yin, Z. Zhu, J. Li, Investigation of Low-Temperature Selective Catalytic Reduction of NOx with Ammonia over Mn-Modified Fe2O3/AC Catalysts, J. Braz. Chem. Soc. 29 (2018) 79-87.
    [34]
    W. Mu, J. Zhu, S. Zhang, Y. Guo, L. Su, X. Li, Z. Li, Novel proposition on mechanism aspects over Fe-Mn/ZSM-5 catalyst for NH3-SCR of NOx at low temperature: rate and direction of multifunctional electron-transfer-bridge and in situ DRIFTs analysis, Catal. Sci. Technol. 6 (2016) 7532-7548.
    [35]
    T. Wang, Z. Wan, X. Yang, X. Zhang, X. Niu, B. Sun, Promotional effect of iron modification on the catalytic properties of Mn-Fe/ZSM-5 catalysts in the Fast SCR reaction, Fuel Process. Technol. 169 (2018) 112-121.
    [36]
    L. Zhang, D. Zhang, J. Zhang, S. Cai, C. Fang, L. Huang, H. Li, R. Gao, L. Shi, Design of meso-TiO2@ MnOx-CeOx/CNTs with a core-shell structure as DeNOx catalysts: promotion of activity, stability and SO2-tolerance, Nanoscale, 5 (2013) 9821-9829.
    [37]
    L. Yan, Y. Liu, K. Zha, H. Li, L. Shi, D. Zhang, Scale-Activity Relationship of MnOx-FeOy Nanocage Catalysts Derived from Prussian Blue Analogues for Low-Temperature NO Reduction: Experimental and DFT Studies, ACS Appl. Mater Inter, 9 (2017) 2581-2593.
    [38]
    C. Wang, F. Yu, M. Zhu, X. Wang, J. Dan, J. Zhang, P. Cao, B. Dai, Microspherical MnO2-CeO2-Al2O3 mixed oxide for monolithic honeycomb catalyst and application in selective catalytic reduction of NOx with NH3 at 50-150  oC, Chem. Eng. J. 2018, DOI: 10.1016/j.cej.2018.04.033.
    [39]
    Z. Liu, H. Liu, H. Zeng, Q. Xu, A novel Ce-Sb binary oxide catalyst for the selective catalytic reduction of NOx with NH3, Cata, Sci. Technol. 6 (2016) 8063-8071.
    [40]
    L. Kang, L. Han, J. He, H. Li, T. Yan, G, Chen, J. Zhang, L. Shi, D. Zhang, Improved NOx Reduction in the Presence of SO2 by Using Fe2O3-Promoted Halloysite-Supported CeO2-WO3 Catalysts, Environ. Sci. Technol. 53 (2019) 938-945.
    [41]
    K. Zhang, F. Yu, M. Zhu, J. Dan, X. Wang, J. Zhang, B. Dai, Enhanced Low Temperature NO Reduction Performance via MnOx-Fe2O3/Vermiculite Monolithic Honeycomb Catalysts, Catalysts, 8 (2018) 100.
    [42]
    C. Fang, D. Zhang, S. Cai, L. Zhang, L. Huang, H. Li, P. Maitarad, L, Shi, R. Gao, J. Zhang, Low-temperature selective catalytic reduction of NO with NH3 over nanoflaky MnOx on carbon nanotubes in situ prepared via a chemical bath deposition route, Nanoscale, 5 (2013) 9199-9207.
    [43]
    F. Gao, X. Tang, H. Yi, J. Li, S. Zhao, J. Wang, C. Chu, C. Li, Promotional mechanisms of activity and SO2 tolerance of Co- or Ni-doped MnOx-CeO2 catalysts for SCR of NOx with NH3 at low temperature, Chem. Eng. J. 317 (2017) 20-31.
    [44]
    X. Lin, S. Li, H. He, Z. Wu, J. Wu, L. Chen, D. Ye, M. Fu, Evolution of oxygen vacancies in MnOx-CeO2 mixed oxides for soot oxidation, Appl. Catal., B: Environ, 223 (2018) 91-102.
    [45]
    X. Sun, R.-t. Guo, S.-w. Liu, J. Liu, W.-g. Pan, X. Shi, H. Qin, Z.-y. Wang, Z.-z. Qiu, X.-y. Liu, The promoted performance of CeO2 catalyst for NH3-SCR reaction by NH3 treatment, Appl. Surf. Sci, 462 (2018) 187-193.
    [46]
    G. Li, B. Wang, Z. Wang, Z. Li, Q. Sun, W.Q. Xu, Y. Li, Reaction Mechanism of Low-Temperature Selective Catalytic Reduction of NOx over Fe-Mn Oxides Supported on Fly-Ash-Derived SBA-15 Molecular Sieves: Structure-Activity Relationships and in Situ DRIFT Analysis, J. Phys. Chem. C, 122 (2018) 20210-20231.
    [47]
    Q. Zhang, C. Qiu, H. Xu, T. Lin, Z. Lin, M. Gong, Y. Chen, Low-temperature selective catalytic reduction of NO with NH3 over monolith catalyst of MnOx/CeO2-ZrO2-Al2O3, Catal. Today, 175 (2011) 171-176.
    [48]
    S. Y. Jiang, R. X. Zhou, Ce doping effect on performance of the Fe/β catalyst for NOx reduction by NH3, Fuel Process. Technol. 133 (2015) 220-226.
    [49]
    T. Boningari, P. R. Ettireddy, A. Somogyvari, Y. Liu, A. Vorontsov, C. A. McDonald, P. G. Smirniotis, Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NOx under oxygen-rich conditions, J. Catal. 325 (2015) 145-155.
    [50]
    L. Zhang, S. Cui, H. Guo, X. Ma, X. Luo, The influence of K+ cation on the MnOx-CeO2/TiO2 catalysts for selective catalytic reduction of NOx with NH3 at low temperature, J. Mol. Catal. A: Chem. 390 (2014) 14-21.
    [51]
    F. Cao, S. Su, J. Xiang, P. Wang, S. Hu, L. Sun, A. Zhang, The activity and mechanism study of Fe-Mn-Ce/γ-Al2O3 catalyst for low temperature selective catalytic reduction of NO with NH3, Fuel, 139 (2015) 232-239.
    [52]
    S. Yang, Y. Fu, Y. Liao, S. Xiong, Z. Qu, N. Yan, J. Li, Competition of selective catalytic reduction and non selective catalytic reduction over MnOx/TiO2 for NO removal: the relationship between gaseous NO concentration and N2O selectivity, Catal. Sci. Technol. 4 (2014) 224-232.
    [53]
    Y. Jung, Y. J. Shin, Y. D. Pyo, C. P. Cho, J. Jang, G. Kim, NOx and N2O emissions over a Urea-SCR system containing both V2O5-WO3/TiO2 and Cu-zeolite catalysts in a diesel engine, Chem. Eng. J. 326 (2017) 853-862.
    [54]
    H. Jiang, Q. Wang, H. Wang, Y. Chen, M. Zhang, MOF-74 as an Efficient Catalyst for the Low-Temperature Selective Catalytic Reduction of NOx with NH3, ACS appl. Mater. Interface, 8 (2016) 26817-26826.
    [55]
    E. Park, M. Kim, H. Jung, S. Chin, J. Jurng, Effect of sulfur on Mn/Ti catalysts prepared using chemical vapor condensation (CVC) for low-temperature NO reduction, ACS Catal. 3 (2013) 1518-1525.
    [56]
    L. Zhang, L. Shi, L. Huang, J. Zhang, R. Gao, D. Zhang, Rational Design of High-Performance DeNOx Catalysts Based on MnxCo3-xO4 Nanocages Derived from Metal-Organic Frameworks, ACS Catal. 4 (2014) 1753-1763.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (194) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return