Citation: | Junqi Tian, Ke Zhang, Wei Wang, Fu Wang, Jianming Dan, Shengchao Yang, Jinli Zhang, Bin Dai, Feng Yu. Enhanced selective catalytic reduction of NO with NH3 via porous micro-spherical aggregates of Mn–Ce–Fe–Ti mixed oxide nanoparticles. Green Energy&Environment, 2019, 4(3): 311-321. doi: 10.1016/j.gee.2019.05.001 |
[1] |
D. Zhao, F. Yu, A. Zhou, C. Ma, B. Dai, High-efficiency removal of NOx using dielectric barrier discharge nonthermal plasma with water as an outer electrode, Plasma Sci. Technol. 20 (2018) 014020.
|
[2] |
Q. Shen, L. Zhang, N. Sun, H. Wang, L. Zhong, C. He, W. Wei, Y. Sun, Hollow MnOx-CeO2 mixed oxides as highly efficient catalysts in NO oxidation, Chem. Eng. J. 322 (2017) 46-55.
|
[3] |
K. Zha, L. Kang, C. Feng, L. Han, H. Li, T. Yan, P. Maitarad, L. Shi, D. Zhang, Improved NOx reduction in the presence of alkalimetals by using hollandite Mn-Ti oxide promoted Cu-SAPO-34 catalysts, Environ. Sci. Nano, 5 (2018) 1408-1419.
|
[4] |
X. Hu, L. Huang, J. Zhang, H. Li, K. Zha, L. Shi, D. Zhang, Facile and template-free fabrication of mesoporous 3D nanosphere-like MnxCo3-xO4 as highly effective catalysts for low temperature SCR of NOx with NH3, J. Mater. Chem. A. 2018, DOI; 10.1039/C7TA08000J.
|
[5] |
L. Chen, J. Li, M. Ge, DRIFT Study on Cerium-Tungsten/Titiania Catalyst for Selective Catalytic Reduction of NOx with NH3, Environ. Sci. Technol. 44 (2010) 9590-9596.
|
[6] |
Q. Li, H. Yang, F. Qiu, X. Zhang, Promotional effects of carbon nanotubes on V2O5/TiO2 for NOx removal, J. hazard. Mater. 192 (2011) 915-921.
|
[7] |
Z. Liu, F. Xu, Z. Zhou, Y. Feng, J. Li, Ce-Sn binary oxide catalyst for the selective catalytic reduction of NOx by NH3 Appl. Surf. Sci. 428 (2018) 526-533.
|
[8] |
D. Meng, W. Zhan, Y. Guo, Y. L. Guo, L. Wang, G. Lu, A highly effective catalyst of Sm-MnOx for the NH3-SCR of NOx at low temperature: the promotional role of Sm and its catalytic performance, ACS Catal. 5 (2015) 5973-5983.
|
[9] |
L. Dong, Y. Fan, W. Ling, C. Yang, B. Huang, Effect of Ce/Y addition on low-temperature SCR activity and SO2 and H2O resistance of MnOx/ZrO2/MWCNTs catalysts, Catalysts, 7 (2017) 181-195.
|
[10] |
S. Andreoli, F. A. Deorsola, C. Galletti, R. Pirone, Nanostructured MnOx catalysts for low-temperature NOx SCR, Chem. Eng. J. 278 (2015) 174-182.
|
[11] |
J. L. Xie, Z. B. Fu, F. He, D. Fang, Low temperature selective catalytic reduction of NOx with NH3 over MnOx/TiO2 catalyst, Appl. Mech. Mater. 295 (2013) 364-369.
|
[12] |
L. Singoredjo, R. Korver, F. Kapteijn, J. Moulijn, Alumina supported manganese oxides for the low-temperature selective catalytic reduction of nitric oxide with ammonia, Appl. Catal. B: Environ. 1 (1992) 297-316.
|
[13] |
G. Gao, J. Shi, C. Liu, C. Gao, Z. Fan, C. Niu, Mn/CeO2 catalysts for SCR of NOx with NH3: comparative study on the effect of supports on low-temperature catalytic activity, Appl. Surf. Sci. 411 (2017) 338-346.
|
[14] |
C. Liu, G. Gao, J. W. Shi, C. He, G. Li, N. Bai, C. Niu, MnOx-CeO2 shell-in-shell microspheres for NH3-SCR de-NOx at low temperature, Catal. Commun. 86 (2016) 36-40.
|
[15] |
S. Yang, Y. Guo, H. Chang, L. Ma, Y. Peng, Z. Qu, N. Yan, C. Wang, J. Li, Novel effect of SO2 on the SCR reaction over CeO2: Mechanism and significance, Appl. Catal. B: Environ. 136 (2013) 19-28.
|
[16] |
X. Yao, T. Kong, L. Chen, S. Ding, F. Yang, L. Dong, Enhanced low-temperature NH3-SCR performance of MnOx/CeO2 catalysts by optimal solvent effect, Appl. Surf. Sci. 420 (2017) 407-415.
|
[17] |
Z. Liu, J. Zhu, J. Li, L. Ma, S. I. Woo, Novel Mn-Ce-Ti mixed-oxide catalyst for the selective catalytic reduction of NOx with NH3, ACS appl. Mater. Interface, 6 (2014) 14500-14508.
|
[18] |
Y. Wang, X. Li, L. Zhan, C. Li, W. Qiao, L. Ling, Effect of SO2 on Activated Carbon Honeycomb Supported CeO2-MnOx Catalyst for NO Removal at Low Temperature, Ind. Eng. Chem. Res. 54 (2015) 2274-2278.
|
[19] |
S. Yang, S. Xiong, Y. Liao, X. Xiao, F. Qi, Y. Peng, Y. Fu, W. Shan, J. Li, Mechanism of N2O formation during the low-temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel, Environ. Sci. Tech. 48 (2014) 10354-10362.
|
[20] |
S. Yang, F. Qi, S. Xiong, H. Dang, Y. Liao, P. K. Wong, J. Li, MnOx supported on Fe-Ti spinel: A novel Mn based low temperature SCR catalyst with a high N2 selectivity, Appl. Catal. B: Environ. 181 (2016) 570-580.
|
[21] |
Z. Chen, F. Wang, H. Li, Q. Yang, L. Wang, X. Li, Low-temperature selective catalytic reduction of NOx with NH3 over Fe-Mn mixed-oxide catalysts containing Fe3Mn3O8 phase, Ind. Eng. Chem. Res. 51 (2011) 202-212.
|
[22] |
Q. Xu, R. Su, L. Cao, Y. Li, C. Yang, Y. Luo, J. Street, P. Jiao, L. Cai, Facile preparation of high-performance Fe-doped Ce-Mn/TiO2 catalysts for the low-temperature selective catalytic reduction of NOx with NH3, RSC Adv. 7 (2017) 48785-48792.
|
[23] |
K. Zha, S. Cai, H. Hu, H. Li, T. Yan, L. Shi, D. Zhang, Ce-Sn binary oxide catalyst for the selective catalytic reduction of NOx by NH3, J. Phys. Chem. C, 121 (2017) 25243-25254.
|
[24] |
F. Yu, J. Zhang, Y. Yang, G. Song, Up-scalable synthesis, structure and charge storage properties of porous microspheres of LiFePO4@C nanocomposites, J. Mater. Chem. 19 (2009) 9121-9125.
|
[25] |
F. Yu, S. Ge, B. Li, G. Sun, R. Mei, L. Zheng, Three-dimensional porous LiFePO4: Design, architectures and high performance for lithium ion batteries, Curr. Inorg. Chem. 2 (2012) 194-212.
|
[26] |
F. Yu, P. Qi, Y. An, G. Wang, L. Xia, M. Zhu, B. Dai, Up-Scaled Microspherical Aggregates of LiFe0.4V0.4PO4/C Nanocomposites as Cathode Materials for High-Rate Li-Ion Batteries, Energy Technol. 3 (2015) 496-502.
|
[27] |
E. Lim, Y.J. Kim, J.H. Kim, T. Ryu, S. Lee, B.K. Cho, I.-S. Nam, J.W. Choung, S. Yoo, NO oxidation activity of Ag-doped perovskite catalysts, J. Catal. 319 (2014) 182-193.
|
[28] |
R.-t. Guo, Q.-l. Chen, H.-l. Ding, Q.-s. Wang, W.-g. Pan, N.-z. Yang, C.-z. Lu, Preparation and characterization of CeOx@ MnOx core-shell structure catalyst for catalytic oxidation of NO, Catal. Commun. 69 (2015) 165-169.
|
[29] |
F. Yu, J. Zhang, Y. Yang, G. Song, Porous micro-spherical aggregates of LiFePO4/C nanocomposites: A novel and simple template-free concept and synthesis via sol-gel-spray drying method, J. Power Sources, 195 (2010) 6873-6878.
|
[30] |
M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic-inorganic nanocomposite materials, Chem. Mater. 13 (2001) 3169-3183.
|
[31] |
F. Yu, S. H. Lim, Y. Zhen, Y. An, J. Lin, Optimized electrochemical performance of three-dimensional porous LiFePO4/C microspheres via microwave irradiation assisted synthesis, J. Power Sources, 271 (2014) 223-230.
|
[32] |
Y. Wang, C. Ge, L. Zhan, C. Li, W. Qiao, L. Ling, MnOx-CeO2/Activated Carbon Honeycomb Catalyst for Selective Catalytic Reduction of NO with NH3 at Low Temperatures, Ind. Eng. Chem. Res. 51 (2012) 11667-11673.
|
[33] |
J. Chen, B. Zhu, Y. Sun, S. Yin, Z. Zhu, J. Li, Investigation of Low-Temperature Selective Catalytic Reduction of NOx with Ammonia over Mn-Modified Fe2O3/AC Catalysts, J. Braz. Chem. Soc. 29 (2018) 79-87.
|
[34] |
W. Mu, J. Zhu, S. Zhang, Y. Guo, L. Su, X. Li, Z. Li, Novel proposition on mechanism aspects over Fe-Mn/ZSM-5 catalyst for NH3-SCR of NOx at low temperature: rate and direction of multifunctional electron-transfer-bridge and in situ DRIFTs analysis, Catal. Sci. Technol. 6 (2016) 7532-7548.
|
[35] |
T. Wang, Z. Wan, X. Yang, X. Zhang, X. Niu, B. Sun, Promotional effect of iron modification on the catalytic properties of Mn-Fe/ZSM-5 catalysts in the Fast SCR reaction, Fuel Process. Technol. 169 (2018) 112-121.
|
[36] |
L. Zhang, D. Zhang, J. Zhang, S. Cai, C. Fang, L. Huang, H. Li, R. Gao, L. Shi, Design of meso-TiO2@ MnOx-CeOx/CNTs with a core-shell structure as DeNOx catalysts: promotion of activity, stability and SO2-tolerance, Nanoscale, 5 (2013) 9821-9829.
|
[37] |
L. Yan, Y. Liu, K. Zha, H. Li, L. Shi, D. Zhang, Scale-Activity Relationship of MnOx-FeOy Nanocage Catalysts Derived from Prussian Blue Analogues for Low-Temperature NO Reduction: Experimental and DFT Studies, ACS Appl. Mater Inter, 9 (2017) 2581-2593.
|
[38] |
C. Wang, F. Yu, M. Zhu, X. Wang, J. Dan, J. Zhang, P. Cao, B. Dai, Microspherical MnO2-CeO2-Al2O3 mixed oxide for monolithic honeycomb catalyst and application in selective catalytic reduction of NOx with NH3 at 50-150 oC, Chem. Eng. J. 2018, DOI: 10.1016/j.cej.2018.04.033.
|
[39] |
Z. Liu, H. Liu, H. Zeng, Q. Xu, A novel Ce-Sb binary oxide catalyst for the selective catalytic reduction of NOx with NH3, Cata, Sci. Technol. 6 (2016) 8063-8071.
|
[40] |
L. Kang, L. Han, J. He, H. Li, T. Yan, G, Chen, J. Zhang, L. Shi, D. Zhang, Improved NOx Reduction in the Presence of SO2 by Using Fe2O3-Promoted Halloysite-Supported CeO2-WO3 Catalysts, Environ. Sci. Technol. 53 (2019) 938-945.
|
[41] |
K. Zhang, F. Yu, M. Zhu, J. Dan, X. Wang, J. Zhang, B. Dai, Enhanced Low Temperature NO Reduction Performance via MnOx-Fe2O3/Vermiculite Monolithic Honeycomb Catalysts, Catalysts, 8 (2018) 100.
|
[42] |
C. Fang, D. Zhang, S. Cai, L. Zhang, L. Huang, H. Li, P. Maitarad, L, Shi, R. Gao, J. Zhang, Low-temperature selective catalytic reduction of NO with NH3 over nanoflaky MnOx on carbon nanotubes in situ prepared via a chemical bath deposition route, Nanoscale, 5 (2013) 9199-9207.
|
[43] |
F. Gao, X. Tang, H. Yi, J. Li, S. Zhao, J. Wang, C. Chu, C. Li, Promotional mechanisms of activity and SO2 tolerance of Co- or Ni-doped MnOx-CeO2 catalysts for SCR of NOx with NH3 at low temperature, Chem. Eng. J. 317 (2017) 20-31.
|
[44] |
X. Lin, S. Li, H. He, Z. Wu, J. Wu, L. Chen, D. Ye, M. Fu, Evolution of oxygen vacancies in MnOx-CeO2 mixed oxides for soot oxidation, Appl. Catal., B: Environ, 223 (2018) 91-102.
|
[45] |
X. Sun, R.-t. Guo, S.-w. Liu, J. Liu, W.-g. Pan, X. Shi, H. Qin, Z.-y. Wang, Z.-z. Qiu, X.-y. Liu, The promoted performance of CeO2 catalyst for NH3-SCR reaction by NH3 treatment, Appl. Surf. Sci, 462 (2018) 187-193.
|
[46] |
G. Li, B. Wang, Z. Wang, Z. Li, Q. Sun, W.Q. Xu, Y. Li, Reaction Mechanism of Low-Temperature Selective Catalytic Reduction of NOx over Fe-Mn Oxides Supported on Fly-Ash-Derived SBA-15 Molecular Sieves: Structure-Activity Relationships and in Situ DRIFT Analysis, J. Phys. Chem. C, 122 (2018) 20210-20231.
|
[47] |
Q. Zhang, C. Qiu, H. Xu, T. Lin, Z. Lin, M. Gong, Y. Chen, Low-temperature selective catalytic reduction of NO with NH3 over monolith catalyst of MnOx/CeO2-ZrO2-Al2O3, Catal. Today, 175 (2011) 171-176.
|
[48] |
S. Y. Jiang, R. X. Zhou, Ce doping effect on performance of the Fe/β catalyst for NOx reduction by NH3, Fuel Process. Technol. 133 (2015) 220-226.
|
[49] |
T. Boningari, P. R. Ettireddy, A. Somogyvari, Y. Liu, A. Vorontsov, C. A. McDonald, P. G. Smirniotis, Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NOx under oxygen-rich conditions, J. Catal. 325 (2015) 145-155.
|
[50] |
L. Zhang, S. Cui, H. Guo, X. Ma, X. Luo, The influence of K+ cation on the MnOx-CeO2/TiO2 catalysts for selective catalytic reduction of NOx with NH3 at low temperature, J. Mol. Catal. A: Chem. 390 (2014) 14-21.
|
[51] |
F. Cao, S. Su, J. Xiang, P. Wang, S. Hu, L. Sun, A. Zhang, The activity and mechanism study of Fe-Mn-Ce/γ-Al2O3 catalyst for low temperature selective catalytic reduction of NO with NH3, Fuel, 139 (2015) 232-239.
|
[52] |
S. Yang, Y. Fu, Y. Liao, S. Xiong, Z. Qu, N. Yan, J. Li, Competition of selective catalytic reduction and non selective catalytic reduction over MnOx/TiO2 for NO removal: the relationship between gaseous NO concentration and N2O selectivity, Catal. Sci. Technol. 4 (2014) 224-232.
|
[53] |
Y. Jung, Y. J. Shin, Y. D. Pyo, C. P. Cho, J. Jang, G. Kim, NOx and N2O emissions over a Urea-SCR system containing both V2O5-WO3/TiO2 and Cu-zeolite catalysts in a diesel engine, Chem. Eng. J. 326 (2017) 853-862.
|
[54] |
H. Jiang, Q. Wang, H. Wang, Y. Chen, M. Zhang, MOF-74 as an Efficient Catalyst for the Low-Temperature Selective Catalytic Reduction of NOx with NH3, ACS appl. Mater. Interface, 8 (2016) 26817-26826.
|
[55] |
E. Park, M. Kim, H. Jung, S. Chin, J. Jurng, Effect of sulfur on Mn/Ti catalysts prepared using chemical vapor condensation (CVC) for low-temperature NO reduction, ACS Catal. 3 (2013) 1518-1525.
|
[56] |
L. Zhang, L. Shi, L. Huang, J. Zhang, R. Gao, D. Zhang, Rational Design of High-Performance DeNOx Catalysts Based on MnxCo3-xO4 Nanocages Derived from Metal-Organic Frameworks, ACS Catal. 4 (2014) 1753-1763.
|