Zhijia Du, Christopher J. Janke, Jianlin Li, David L. Wood. High–Speed electron beam curing of thick electrode for high energy density Li-ion batteries. Green Energy&Environment, 2019, 4(4): 375-381. doi: 10.1016/j.gee.2019.04.001
Citation: Zhijia Du, Christopher J. Janke, Jianlin Li, David L. Wood. High–Speed electron beam curing of thick electrode for high energy density Li-ion batteries. Green Energy&Environment, 2019, 4(4): 375-381. doi: 10.1016/j.gee.2019.04.001

High–Speed electron beam curing of thick electrode for high energy density Li-ion batteries

doi: 10.1016/j.gee.2019.04.001
  • Electron beam curing is demonstrated as a promising method for high speed, low cost and environmentally friendly battery electrode manufacturing. This work reports transfer of this process to pilot scale equipment and evaluation of electrochemical performance in prototype 1.5 Ah pouch cells. Thick LiNi0.5Mn0.3Co0.2O2 (NMC532) composite electrodes with an areal loading of 25 mg cm2 (∼4 mAh cm2) are successfully cured at a line speed of 500 feet per minute at 275 keV. Compared to the NMC532 cathode processed via a conventional coating method, the electron beam cured electrodes show higher capacity fade in the first 100 cycles, but similar fade rate afterwards. Further improvement strategies are proposed and discussed. This work demonstrates that electron beam curing is a promising method for manufacturing thick battery electrodes at high speeds and low capital/operation cost.

     

  • • Electron beam curing has advantages of low energy input, high speed production and compact footprint. • Its application in manufacturing composite Li-ion battery electrode is demonstrated. • 1.5 Ah pouch cell performance is reported from 500 feet-per-minute cured electrodes.
  • loading
  • [1]
    D.L.Wood, J.D.Quass, J.Li, et al. Dry. Technol., 36 (2018),pp. 234-244
    [2]
    D.L.Wood, J.Li, C.Daniel J. Power Sources, 275 (2015),pp. 234-242
    [3]
    S.Ahmed, P.A.Nelson, K.G.Gallagher, et al. J. Power Sources, 322 (2016),pp. 169-178
    [4]
    J.Li, Z.Du, R.E.Ruther, et al. JOM, 69 (2017),pp. 1484-1496
    [5]
    R.Schwalm
    [6]
    Z.Xue, L.Hu, K.Amine, et al. Energy Technol., 3 (2015),pp. 469-475
    [7]
    Z.Du, C.J.Janke, J.Li, et al. J. Electrochem. Soc., 163 (2016),pp. A2776-A2780
    [8]
    Z.Du, D.L.Wood, C.Daniel, et al. J. Appl. Electrochem., 47 (2017),pp. 405-415
    [9]
    K.G.Gallagher, S.E.Trask, C.Bauer, et al. J. Electrochem. Soc., 163 (2016),pp. A138-A149
    [10]
    Z.Du, K.M.Rollag, J.Li, et al. J. Power Sources, 354 (2017),pp. 200-206
    [11]
    A.Carignano Paint Coating Ind., 31 (2015),p. 50
    [12]
    V.A.Bhanu, K.Kishore Chem. Rev., 91 (1991),pp. 99-117
    [13]
    M.Awokola, W.Lenhard, H.Löffler, et al. Prog. Org. Coating, 44 (2002),pp. 211-216
    [14]
    A.K.O'Brien, N.B.Cramer, C.N.Bowman J. Polym. Sci. Part A Polym. Chem., 44 (2006),pp. 2007-2014
    [15]
    F.R.Wight J. Polym. Sci. Polym. Lett. Ed., 16 (1978),pp. 121-127
    [16]
    K.Studer, C.Decker, E.Beck, et al. Prog. Org. Coating, 48 (2003),pp. 101-111
    [17]
    K.Studer, C.Decker, E.Beck, et al. Prog. Org. Coating, 48 (2003),pp. 92-100
    [18]
    N.B.Cramer, C.N.Bowman J. Polym. Sci. Part A Polym. Chem., 39 (2001),pp. 3311-3319
    [19]
    L.Lecamp, F.Houllier, B.Youssef, et al. Polymer, 42 (2001),pp. 2727-2736
    [20]
    V.J.Lopata, C.B.Saunders, A.Singh, et al. Radiat. Phys. Chem., 56 (1999),pp. 405-415
    [21]
    C.Saunders, V.Lopata, J.Barnard, et al. Radiat. Phys. Chem., 57 (2000),pp. 441-445
    [22]
    M.Sangermano, N.Razza, J.V.Crivello Macromol. Mater. Eng., 299 (2014),pp. 775-793
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (211) PDF downloads(15) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return