Aashish Gaurav, Stéphane Dumas, Chau T.Q. Mai, Flora T.T. Ng. A kinetic model for a single step biodiesel production from a high free fatty acid (FFA) biodiesel feedstock over a solid heteropolyacid catalyst. Green Energy&Environment, 2019, 4(3): 328-341. doi: 10.1016/j.gee.2019.03.004
Citation: Aashish Gaurav, Stéphane Dumas, Chau T.Q. Mai, Flora T.T. Ng. A kinetic model for a single step biodiesel production from a high free fatty acid (FFA) biodiesel feedstock over a solid heteropolyacid catalyst. Green Energy&Environment, 2019, 4(3): 328-341. doi: 10.1016/j.gee.2019.03.004

A kinetic model for a single step biodiesel production from a high free fatty acid (FFA) biodiesel feedstock over a solid heteropolyacid catalyst

doi: 10.1016/j.gee.2019.03.004
  • Production of biodiesel from yellow grease (waste cooking oil and waste animal fats) is fast emerging as a promising alternative to address the twin challenges before the biodiesel industry today-fluctuation in prices of vegetable oil and the food versus fuel debate. Yellow grease has a high percentage of free fatty acids (FFA) and proves to be an unsuitable feedstock for biodiesel production from commercially viable alkali-catalyzed production systems due to saponification problems. “Green” methodologies based on heterogeneous solid acid catalyzed reactions have the potential to simultaneously promote esterification and transesterification reactions of yellow grease to produce biodiesel without soap formation and offer easy catalyst separation without generation of toxic streams. This paper presents kinetic studies for the conversion of model yellow grease feeds to biodiesel using a heteropolyacid supported on alumina (HSiW/Al2O3) using a batch autoclave. Three model yellow grease feeds were prepared using canola oil with added FFA such as palmitic, oleic and linoleic acid. A pseudo homogeneous kinetic model for the parallel esterification and transesterification was developed. The rate constants and activation parameters for esterification and transesterification reactions for the model yellow grease feeds were determined. The rate constants for esterification are higher than the transesterification rate constants. The kinetic model was validated using the experimental biodiesel data obtained from processing a commercial yellow grease feed. The kinetic model could be used to design novel processes to convert various low-value waste oils, fats and non-food grade oils to sustainable biodiesel.

     

  • • A HSiW/Al2O3 solid acid catalyst is investigated for converting canola oil with added FFA to biodiesel. • A pseudo homogeneous kinetic model is developed for the simultaneous esterification and transesterification reactions. • Kinetic parameters for transesterification are determined for canola oil, and canola oil and different FFA. • Kinetic parameters for esterification of oleic acid, linoleic acid, palmitic acid in canola oil are determined. • Model predictions are in good agreement with the experimental data for the biodiesel production from yellow grease. • A pseudo homogeneous kinetic model for the simultaneous esterification and transesterification of oleic, linoleic and palmitic acid in canola oil were determined using a HiSiW/Al2O3 solid acid catalyst. • The kinetic model was validated with the experimental data for the production of biodiesel from a commercial yellow grease feedstock.
  • loading
  • [1]
    A.Eisentraut
    [2]
    Oilprice.com
    [3]
    D.Y.C.Leung, X.Wu, M.K.H.Leung Appl. Energy, 87 (2010),pp. 1083-1095
    [4]
    B.Thangaraj, P.R.Solomon, B.Muniyandi, et al. Clean Energy, 3 (2019),pp. 2-23
    [5]
    M.E.Hoque, A.Singh, Y.L.Chuan Biomass Bioenergy, 35 (2011),pp. 1582-1587
    [6]
    Y.Zhang, W.-T.Wong, K.-F.Yung Appl. Energy, 116 (2014),pp. 191-198
    [7]
    A.Gaurav, M.L.Leite, F.T.T.Ng, et al. Energy Fuels, 27 (2013),pp. 6847-6857
    [8]
    P.Verma, M.P.Sharma Renew. Sustain. Energy Rev., 62 (2016),pp. 1063-1071
    [9]
    S.N.Gebremariam, J.M.Marchetti Energy Convers. Manag., 168 (2018),pp. 74-84
    [10]
    B.Freedman, E.H.Pryde, T.L.Mounts J. Am. Oil Chem. Soc., 61 (1984),pp. 1638-1643
    [11]
    K.-S.Liu J. Am. Oil Chem. Soc., 71 (1994),pp. 1179-1187
    [12]
    M.Mittelbach Chromatographia, 37 (1993),pp. 623-626
    [13]
    M.Canakci, J.Van Gerpen Am. Soc. Agric. Eng., 46 (2003),pp. 945-954
    [14]
    C.D.M.de Araújo, C.C.de Andrade, E.de S. e Silva, et al. Renew. Sustain. Energy Rev., 27 (2013),pp. 445-452
    [15]
    A.Plascencia, M.Estrada, R.A.Zinn J. Anim. Sci., 77 (1999),pp. 2603-2609
    [16]
    W.Diaz-Felix, M.R.Riley, W.Zimmt, et al. Biomass Bioenergy, 33 (2009),pp. 558-563
    [17]
    J.M.Encinar, J.F.González, A.Rodríguez-Reinares Ind. Eng. Chem. Res., 44 (2005),pp. 5491-5499
    [18]
    A.Radich
    [19]
    M.G.Kulkarni, A.K.Dalai Ind. Eng. Chem. Res., 45 (2006),pp. 2901-2913
    [20]
    K.Swisher
    [21]
    B.Supple, R.Howard-Hildige, E.Gonzalez-Gomez, et al. J. Am. Oil Chem. Soc., 79 (2002),pp. 175-178
    [22]
    Y.Zhang, M.A.Dubé, D.D.McLean, et al. Bioresour. Technol., 89 (2003),pp. 1-16
    [23]
    S.Furuta, H.Matsuhashi, K.Arata Catal. Commun., 5 (2004),pp. 721-723
    [24]
    J.Boro, A.J.Thakur, D.Deka Fuel Process. Technol., 92 (2011),pp. 2061-2067
    [25]
    B.M.Devassy, F.Lefebvre, W.Böhringer, et al. J. Mol. Catal. A: Chem., 236 (2005),pp. 162-167
    [26]
    M.Di Serio, R.Tesser, P.Lu, et al. Energy Fuels, 22 (2008),pp. 207-217
    [27]
    G.Busca Chem. Rev., 107 (2007),pp. 5366-5410
    [28]
    T.Okuhara, H.Watanabe, T.Nishimura, et al. Chem. Mater., 12 (2000),pp. 2230-2238
    [29]
    C.F.Oliveira, L.M.Dezaneti, F.A.C.Garcia, et al. Appl. Catal. Gen., 372 (2010),pp. 153-161
    [30]
    V.Brahmkhatri, A.Patel Appl. Catal. Gen., 403 (2011),pp. 161-172
    [31]
    C.S.Caetano, I.M.Fonseca, A.M.Ramos, et al. Catal. Commun., 9 (2008),pp. 1996-1999
    [32]
    G.J.Suppes, M.A.Dasari, E.J.Doskocil, et al. Appl. Catal. Gen., 257 (2004),pp. 213-223
    [33]
    A.Patel, N.Narkhede Catal. Sci. Technol., 3 (2013),pp. 3317-3325
    [34]
    L.Xu, Y.Wang, X.Yang, et al. Green Chem., 10 (2008),pp. 746-755
    [35]
    Y.-S.Lien, L.-S.Hsieh, J.C.S.Wu Ind. Eng. Chem. Res., 49 (2010),pp. 2118-2121
    [36]
    D.Rattanaphra, A.P.Harvey, A.Thanapimmetha, et al. Fuel, 97 (2012),pp. 467-475
    [37]
    C.O.Pereira, M.F.Portilho, C.A.Henriques, et al. J. Braz. Chem. Soc., 25 (2014),pp. 2409-2416
    [38]
    C.Baroi, A.K.Dalai Catal. Today, 207 (2013),pp. 74-85
    [39]
    EXtension Farm Energy
    [40]
    A.Baig, F.T.T.Ng Energy Fuels, 24 (2010),pp. 4712-4720
    [41]
    R.Przybylski
    [42]
    H.Noureddini, D.Zhu J. Am. Oil Chem. Soc., 74 (1997),pp. 1457-1463
    [43]
    C.-C.Liu, W.-C.Lu, T.-J.Liu Energy Fuels, 26 (2012),pp. 5400-5407
    [44]
    Z.Zeng, L.Cui, W.Xue, et al.
    [45]
    Y.Warabi, D.Kusdiana, S.Saka Bioresour. Technol., 91 (2004),pp. 283-287
    [46]
    A.H.Joelianingsih, Tambunan, H.Nabetani Procedia Chem., 9 (2014),pp. 182-193
    [47]
    M.Feyzi, L.Norouzi, H.R.Rafiee Sci. World J., 2013 (2013),p. 612712
    [48]
    M.Kaur, A.Ali Eur. J. Lipid Sci. Technol., 117 (2015),pp. 550-560
    [49]
    P.Greg
    [50]
    N.P.Asri, S.Machmudah, W.Wahyudiono, et al. Bull. Chem. React. Eng. Catal., 7 (2013),pp. 215-223
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (73) PDF downloads(11) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return