Hao Qin, Xutao Hu, Jingwen Wang, Hongye Cheng, Lifang Chen, Zhiwen Qi. Overview of acidic deep eutectic solvents on synthesis, properties and applications. Green Energy&Environment, 2020, 5(1): 8-21. doi: 10.1016/j.gee.2019.03.002
Citation: Hao Qin, Xutao Hu, Jingwen Wang, Hongye Cheng, Lifang Chen, Zhiwen Qi. Overview of acidic deep eutectic solvents on synthesis, properties and applications. Green Energy&Environment, 2020, 5(1): 8-21. doi: 10.1016/j.gee.2019.03.002

Overview of acidic deep eutectic solvents on synthesis, properties and applications

doi: 10.1016/j.gee.2019.03.002
  • This review divides the acidic deep eutectic solvents (ADES) into Brønsted and Lewis DES according to their diversity of acidic character. The hydrogen bond donors and halide salts for formulating an ADES are classified, the synthesis methods are described, and the physicochemical properties including freezing point, acidity, density, viscosity and conductivity are presented. Furthermore, the applications of Brønsted acidic deep eutectic solvents (BADES) and Lewis acidic deep eutectic solvents (LADES) are overviewed, respectively, covering the fields in dissolution, extraction, organic reaction and metal electrodeposition. It is expected that the ADES has great potential to replace the pollutional mineral acid, expensive and unstable solid acid, and costly ionic liquid in many acid-employed chemical processes, thus meeting the demands of green chemistry.

     

  • loading
  • [1]
    M.Francisco, A.van den Bruinhorst, M.C.Kroon Angew. Chem. Int. Ed., 52 (2013),pp. 3074-3085
    [2]
    B.Kudłak, J.Namieśnik, K.Owczarek Environ. Sci. Pollut. Res., 22 (2015),pp. 11975-11992
    [3]
    J.Wang, J.Luo, S.Feng, et al. Green Energy Environ., 1 (2016),pp. 43-61
    [4]
    J.Gorke, F.Srienc, R.Kazlauskas Biotechnol. Bioproc. Eng., 15 (2010),pp. 40-53
    [5]
    Y.Ke, W.Jin, Q.W.Yang, et al. ACS Sustain. Chem. Eng., 6 (2018),pp. 8983-8991
    [6]
    K.Dong, X.Liu, H.Dong, et al. Chem. Rev., 117 (2017),pp. 6636-6695
    [7]
    Q.Zhang, K.D.O.Vigier, S.Royer, et al. Chem. Soc. Rev., 41 (2012),pp. 7108-7146
    [8]
    Y.Xie, H.Dong, S.Zhang, et al. Green Energy Environ., 1 (2016),pp. 195-200
    [9]
    E.L.Smith, A.P.Abbott, K.S.Ryder Chem. Rev., 114 (2014),pp. 11060-11082
    [10]
    Y.Cui, C.Li, J.Yin, et al. J. Mol. Liq., 236 (2017),pp. 338-343
    [11]
    A.P.Abbott, G.Capper, D.L.Davies, et al. Chem. Commun., 1 (2003),pp. 70-71
    [12]
    C.Florindo, F.S.Oliveira, L.P.N.Rebelo, et al. ACS Sustain. Chem. Eng., 2 (2014),pp. 2416-2425
    [13]
    A.P.Abbott, D.Boothby, G.Capper, et al. J. Am. Chem. Soc., 126 (2004),pp. 9142-9147
    [14]
    A.P.Abbott, G.Capper, D.L.Davies, et al. Chem. Eur J., 10 (2004),pp. 3769-3774
    [15]
    H.Qin, Z.Song, Q.Zeng, et al. AIChE J., 65 (2019),pp. 675-683
    [16]
    S.Khandelwal, Y.K.Tailor, M.Kumar J. Mol. Liq., 215 (2016),pp. 345-386
    [17]
    Z.Maugeri, P.D.de María RSC Adv., 2 (2012),pp. 421-425
    [18]
    A.P.Abbott, G.Capper, D.L.Davies, et al. Chem. Commun., 19 (2001),pp. 2010-2011
    [19]
    A.P.Abbott, G.Capper, D.L.Davies, et al. Inorg. Chem., 43 (2004),pp. 3447-3452
    [20]
    H.Wang, Y.Jing, X.Wang, et al. J. Mol. Liq., 163 (2011),pp. 77-82
    [21]
    A.P.Abbott, J.C.Barron, K.S.Ryder, et al. Chem. Eur J., 13 (2007),pp. 6495-6501
    [22]
    A.P.Abbott, A.A.Al-Barzinjy, A.A.Abbott, et al. Phys. Chem. Chem. Phys., 16 (2014),pp. 9047-9055
    [23]
    M.Shaibuna, L.V.Theresa, K.Sreekumar Catal. Lett. (2018),pp. 1-14
    [24]
    R.Kore, R.Srivastava J. Mol. Catal. A: Chem., 345 (2011),pp. 117-126
    [25]
    Y.L.Yang, Y.Kou Chem. Commun., 2 (2004),pp. 226-227
    [26]
    E.P.Parry J. Catal., 2 (1963),pp. 371-379
    [27]
    M.B.Taysun, E.Sert, F.S.Atalay J. Mol. Liq., 223 (2016),pp. 845-852
    [28]
    Z.Duan, Y.Gu, Y.Deng Catal. Commun., 7 (2006),pp. 651-656
    [29]
    J.Jacquemin, P.Husson, A.A.Padua, et al. Green Chem., 8 (2006),pp. 172-180
    [30]
    L.Glasser Thermochim. Acta, 421 (2004),pp. 87-93
    [31]
    M.B.Taysun, E.Sert, F.S.Atalat J. Chem. Eng. Data, 62 (2017),pp. 1173-1181
    [32]
    A.P.Abbott, G.Capper, S.Grat ChemPhysChem, 7 (2006),pp. 803-806
    [33]
    M.Hayyan, T.Aissaoui, M.A.Hashim, et al. J. Taiwan Inst. Chem. Eng., 50 (2015),pp. 24-30
    [34]
    C.Schreiner, S.Zugmann, R.Hartl, et al. J. Chem. Eng. Data, 55 (2010),pp. 1784-1788
    [35]
    J.P.Belieres, C.A.Angell J. Phys. Chem. B, 111 (2007),pp. 4926-4937
    [36]
    C.A.Angell, N.Byrne, J.P.Belieres Accounts Chem. Res., 40 (2007),pp. 1228-1236
    [37]
    A.P.Abbott, G.Frish, J.Hartley, et al. Green Chem., 13 (2011),pp. 471-481
    [38]
    A.P.Abbott, G.Capper, D.L.Davies, et al. J. Chem. Eng. Data, 51 (2006),pp. 1280-1282
    [39]
    A.Biswas, R.L.Shogren, D.G.Stevenson, et al. Carbohydr. Polym., 66 (2006),pp. 546-550
    [40]
    H.G.Morrsion, C.C.Sun, S.Neervannan Int. J. Pharmaceut., 378 (2009),pp. 136-139
    [41]
    J.Li, Z.Han, Y.Zou, et al. RSC Adv., 5 (2015),pp. 93937-93944
    [42]
    T.Bosiljkov, F.Dujmić, M.C.Bubalo, et al. Food Bioprod. Process., 102 (2017),pp. 195-203
    [43]
    J.Yin, J.Wang, Z.Li, et al. Green Chem., 17 (2015),pp. 4552-4559
    [44]
    J.Li, H.Xiao, X.Tang, et al. Energy Fuel., 30 (2016),pp. 5411-5418
    [45]
    L.Ding, W.Yang, L.Chen, et al. Catal. Today (2018)
    [46]
    A.A.Assanosi, M.M.Farah, J.Wood, et al. RSC Adv., 4 (2014),pp. 39359-39364
    [47]
    S.Hu, Z.Zhang, Y.Zhou, et al. Green Chem., 11 (2009),pp. 873-877
    [48]
    Q.Zeng, H.Qin, H.Y.Cheng, et al. Chem. Eng. Sci., 1 (2018)
    [49]
    V.D.Santi, F.Cardellini, L.Brinchi, et al. Tetrahedron Lett., 53 (2012),pp. 5151-5155
    [50]
    J.D.Mota-Morales, M.C.Gutiérrez, I.C.Sanchez, et al. Chem. Commun., 47 (2011),pp. 5328-5330
    [51]
    A.Zhu, L.Li, J.Wang, et al. Green Chem., 13 (2011),pp. 1244-1250
    [52]
    T.Preethi, M.P.Padmapriya, B.Abarna, et al. RSC Adv., 7 (2017),pp. 10081-10091
    [53]
    N.Azizi, Z.Manocheri Res. Chem. Intermed., 38 (2012),pp. 1495-1500
    [54]
    D.Shahabi, H.Tavakol J. Mol. Liq., 220 (2016),pp. 324-328
    [55]
    W.Cheng, Z.Fu, J.Wang, et al. Synth. Commun., 42 (2012),pp. 2564-2573
    [56]
    J.Cao, B.Qi, J.Liu, et al. RSC Adv., 6 (2016),pp. 21612-21616
    [57]
    A.P.Abott, G.Capper, D.L.Davies, et al. Trans. Inst. Met. Finish., 82 (2004),pp. 14-17
    [58]
    H.Lian, S.Hong, A.Carranza, et al. RSC Adv., 5 (2015),pp. 28778-28785
    [59]
    A.Hayyan, M.A.Hashim, F.S.Mjalli, et al. Chem. Eng. Sci., 92 (2013),pp. 81-88
    [60]
    C.Mao, R.Zhao, X.Li, et al. RSC Adv., 7 (2017),pp. 12805-12811
    [61]
    F.Liu, Z.Xue, X.Zhao, et al. Chem. Commun., 54 (2018),pp. 6140-6143
    [62]
    Z.Song, C.Y.Zhang, Z.W.Qi, et al. AIChE J., 64 (2018),pp. 1013-1025
    [63]
    Z.Song, T.Zhou, Z.W.Qi, et al. ACS Sustain. Chem. Eng., 5 (2017),pp. 3382-3389
    [64]
    J.N.Zhang, D.L.Peng, Z.Song, et al. Chem. Eng. Sci., 162 (2017),pp. 355-363
    [65]
    J.N.Zhang, L.Qin, D.L.Peng, et al. Chem. Eng. Sci., 162 (2017),pp. 364-374
    [66]
    J.W.Wang, Z.Song, H.Y.Cheng, et al. ACS Sustain. Chem. Eng., 6 (2018),pp. 12025-12035
    [67]
    Z.Song, X.Li, H.Chao, et al. Green Energy Environ (2019),pp. 154-165
    [68]
    Z.Song, T.Zhou, J.N.Zhang, et al. Chem. Eng. Sci., 129 (2015),pp. 69-77
    [69]
    M.C.Gutiérrez, M.L.Ferrer, C.R.Mateo, et al. Langmuir, 25 (2009),pp. 5509-5515
    [70]
    H.W.Ren, C.M.Chen, S.H.Guo, et al. Bioresources, 11 (2016),pp. 8457-8469
    [71]
    E.A. Drylie, D.S. Wragg, E.R. Parnham, P.S. Wheatley, A.M. Slawin, J.E. Warren, R.E. Morris, Angew. Chem. Int. Ed. 46 (2007) 7839-7843.
    [72]
    L.Liu, S.Ferdov, C.Coelho, et al. Inorg. Chem., 48 (2009),pp. 4598-4600
    [73]
    S.A.Choi, J.S.Lee, Y.K.Oh, et al. Algal Res., 3 (2014),pp. 44-48
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (740) PDF downloads(108) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return