Xiaowei Li, Bin Wang, Yuhong Huang, Jun Di, Jiexiang Xia, Wenshuai Zhu, Huaming Li. Boosting photocatalytic degradation of RhB via interfacial electronic effects between Fe-based ionic liquid and g-C3N4. Green Energy&Environment, 2019, 4(2): 198-206. doi: 10.1016/j.gee.2019.02.002
Citation: Xiaowei Li, Bin Wang, Yuhong Huang, Jun Di, Jiexiang Xia, Wenshuai Zhu, Huaming Li. Boosting photocatalytic degradation of RhB via interfacial electronic effects between Fe-based ionic liquid and g-C3N4. Green Energy&Environment, 2019, 4(2): 198-206. doi: 10.1016/j.gee.2019.02.002

Boosting photocatalytic degradation of RhB via interfacial electronic effects between Fe-based ionic liquid and g-C3N4

doi: 10.1016/j.gee.2019.02.002
  • The Fe-based ionic liquid doped g-C3N4 (FeCN) photocatalyst was firstly prepared base on ultrathin g-C3N4 obtained by multiple calcination method with a metal-based reactive ionic liquid [Omim]FeCl4 for the degradation of Rhodamine B (RhB). Experimental results revealed that Fe3+ species were doped into the framework of g-C3N4. The effect of the amount of Fe-doping on the catalytic activity was performed. The result showed that the FeCN could effectively degrade RhB under the condition of visible light irradiation. The photocurrent analysis showed that the incorporation of Fe3+ into g-C3N4 material could accelerate the separation of the photogenerated carriers significantly. At the same time, the reactive species generated during the photodegradation process were tested by radicals trapping experiments and electron spin resonance (ESR). It was proposed that the synergistic effect of O2•− and ·OH contributed to degrade RhB efficiently.

     

  • loading
  • [1]
    D.Ollis, P.Pichat, N.Serpone Appl. Catal. B Environ., 99 (2010),p. 377
    [2]
    C.Lv, C.Yan, G.Chen, et al. Angew. Chem. Int. Ed., 57 (2018),pp. 6073-6076
    [3]
    H.Yu, J.Li, Y.Zhang, et al. Angew. Chem. Int. Ed., 58 (2019),pp. 3880-3884
    [4]
    F.Chen, H.Huang, L.Ye, et al. Adv. Funct. Mater., 28 (2018),p. 1804284
    [5]
    F.Li, Y.Zhao, Y.Hao, et al. J. Hazard Mater., 239 (2012),pp. 118-127
    [6]
    W.Ouyang, F.Teng, X.Fang Adv. Funct. Mater., 28 (2018),p. 1707178
    [7]
    Y.Li, Z.Chen, S.Bao, et al. Chem. Eng. J., 331 (2018),pp. 383-388
    [8]
    H.Song, Z.Liu, Y.Wang, et al. Green Energy Environ. (2018)
    [9]
    M.Mao, S.Zhao, Z.Chen, et al. Green Energy Environ., 3 (2018),pp. 229-238
    [10]
    H.Dong, X.Guo, C.Yang, et al. Appl. Catal. B Environ., 230 (2018),pp. 65-76
    [11]
    Y.Hong, Y.Jiang, C.Li, et al. Appl. Catal. B Environ., 180 (2016),pp. 663-673
    [12]
    Y.Zheng, L.Lin, B.Wang, et al. Angew. Chem. Int. Ed., 54 (2015),pp. 12868-12884
    [13]
    D.Zeng, W.Xu, W.Ong, et al. Appl. Catal. B Environ., 221 (2018),pp. 47-55
    [14]
    J.Wang, J.Chen, P.Wang, et al. Appl. Catal. B Environ., 239 (2018),pp. 578-585
    [15]
    X.Yan, Z.Jia, H.Che, et al. Appl. Catal. B Environ., 234 (2018),pp. 19-25
    [16]
    M.Bellardita, E.I.Garcia-Lopez, G.Marci, et al. Appl. Catal. B Environ., 220 (2018),pp. 222-233
    [17]
    J.Di, J.Xia, X.Li, et al. Carbon, 107 (2016),pp. 1-10
    [18]
    S.Tan, Z.Xing, J.Zhang, et al. J. Catal., 357 (2018),pp. 90-99
    [19]
    N.Tian, Y.Zhang, X.Li, et al. Nano Energy, 38 (2017),pp. 72-81
    [20]
    Z.You, Y.Su, Y.Yu, et al. Appl. Catal. B Environ., 213 (2017),pp. 127-135
    [21]
    S.Mahzoon, S.M.Nowee, M.Haghighi Renew. Energy, 127 (2018),pp. 433-443
    [22]
    J.Zhao, N.Li, R.Yu, et al. Chem. Eng. J., 349 (2018),pp. 530-538
    [23]
    S.Deng, P.Yuan, X.Ji, et al. ACS Appl. Mater. Interfaces, 7 (2015),pp. 543-552
    [24]
    Y.Wang, H.Cai, F.Qian, et al. J. Colloid Interface Sci., 533 (2019),pp. 47-58
    [25]
    F.Wang, P.Chen, Y.Feng, et al. Appl. Catal. B Environ., 207 (2017),pp. 103-113
    [26]
    A.Shi, H.Li, S.Yin, et al. Appl. Catal. B Environ., 218 (2017),pp. 137-146
    [27]
    Y.Wang, L.Li, Y.Wei, et al. Angew. Chem. Int. Ed., 56 (2017),pp. 8974-8980
    [28]
    F.Li, S.Liu, Y.Xue, et al. Chem. Eur. J., 21 (2015),pp. 10149-10159
    [29]
    J.Di, J.Xia, S.Yin, et al. J. Mater. Chem. A, 2 (2014),pp. 5340-5351
    [30]
    W.Gu, F.Lu, C.Wang, et al. ACS Appl. Mater. Interfaces, 9 (2017),pp. 28674-28684
    [31]
    X.Wang, X.Chen, A.Thomas, et al. Adv. Mater., 21 (2009),pp. 1609-1612
    [32]
    J.Gao, Y.Wang, S.Zhou, et al. ChemCatChem, 9 (2017),pp. 1708-1715
    [33]
    X.Chen, J.Zhang, X.Fu, et al. J. Am. Chem. Soc., 131 (2009),pp. 11658-11659
    [34]
    X.Wang, K.Maeda, A.Thomas, et al. Nat. Mater., 8 (2009),pp. 76-80
    [35]
    X.Zhou, B.Jin, R.Chen, et al. Mater. Res. Bull., 48 (2013),pp. 1447-1452
    [36]
    J.Xia, J.Di, H.Li, et al. Appl. Catal. B Environ., 181 (2016),pp. 260-269
    [37]
    H.Huang, X.Han, X.Li, et al. ACS Appl. Mater. Interfaces, 7 (2015),pp. 482-492
    [38]
    B.Wang, J.Di, G.Liu, et al. J. Colloid Interface Sci., 507 (2017),pp. 310-322
    [39]
    B.Wang, J.Di, P.Zhang, et al. Appl. Catal. B Environ., 206 (2017),pp. 127-135
    [40]
    H.Huang, S.Tu, C.Zeng, et al. Angew. Chem. Int. Ed., 56 (2017),pp. 11860-11864
    [41]
    H.Huang, X.Li, J.Wang, et al. ACS Catal., 5 (2015),pp. 4094-4103
    [42]
    H.Huang, K.Xiao, Y.He, et al. Appl. Catal. B Environ., 199 (2016),pp. 75-86
    [43]
    W.Wang, J.C.Yu, D.Xia, et al. Environ. Sci. Technol., 15 (2013),pp. 8724-8732
    [44]
    Y.Zheng, J.Liu, J.Liang, et al. Energy Environ. Sci., 5 (2012),pp. 6717-6731
    [45]
    Y.Feng, C.Liao, L.Kong, et al. J. Hazard Mater., 354 (2018),pp. 63-71
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (161) PDF downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return