Tongtong Liu, Kai Wang, Yongxiu Chen, Shuangliang Zhao, Yongsheng Han. Dominant role of wettability in improving the specific capacitance. Green Energy&Environment, 2019, 4(2): 171-179. doi: 10.1016/j.gee.2019.01.010
Citation: Tongtong Liu, Kai Wang, Yongxiu Chen, Shuangliang Zhao, Yongsheng Han. Dominant role of wettability in improving the specific capacitance. Green Energy&Environment, 2019, 4(2): 171-179. doi: 10.1016/j.gee.2019.01.010

Dominant role of wettability in improving the specific capacitance

doi: 10.1016/j.gee.2019.01.010
  • Here we report a strategy to enhance the energy density of supercapacitors by increasing the utilization rate of the specific surface area (SSA) via wettability improvement. The nonporous gold (NPG) film is used as the electrodes and the ionic liquid [EMIM]BF4 is the electrolyte. When the electrode is coated by paraffin, an increase of the contact angle leads to a remarkable reduction of the specific capacitance. While when acetonitrile is added into the electrolyte, the contact angle is decreased and the utilization rate of SSA is improved, which results in an increase of the specific capacitance. The addition of isopropyl acetate into the electrolyte leads to a further increase of the specific capacitance. To generalize the role of the wettability in improving the energy density, a carbon-based electrode is evaluated in the solution of potassium hydroxide. An addition of propyl alcohol into the potassium hydroxide solution leads to an increase of the specific capacitance, as well as a long-term stability of the supercapacitor. The role of conductivity in this study is excluded by designing experiments. This paper highlights the significance of wettability in determining the specific capacitance, showing an alternative to improve the energy density of supercapacitors.

     

  • loading
  • [1]
    D.Pech, M.Brunet, H.Durou, et al. Nat. Nanotechnol., 5 (2010),pp. 651-654
    [2]
    Y.Huang, W.Chen, H.Li, et al. Green Energy Environ., 3 (2018),pp. 86-96
    [3]
    D.N.Sangeetha, M.Selvakumar Appl. Surf. Sci., 453 (2018),pp. 132-140
    [4]
    P.Simon, Y.Gogotsi, B.Dunn Science, 343 (2014),pp. 1210-1211
    [5]
    H.Zhang, X.Zhang, H.Li, et al. Green Energy Environ., 3 (2018),pp. 56-62
    [6]
    Z.Gao, C.Bumgardner, N.Song, et al. Nat. Commun., 7 (2016),pp. 11586-11598
    [7]
    Z.Yin, Y.Bu, J.Ren, et al. Chem. Eng. J., 345 (2018),pp. 165-173
    [8]
    K.Xie, X.Qin, X.Wang, et al. Adv. Mater., 24 (2012),pp. 347-352
    [9]
    J.Yang, J.Zhang, X.Li, et al. Nano Energy, 53 (2018),pp. 916-925
    [10]
    Y.Zhang, L.Liu, P.Zhang, et al. Chem. Eng. J., 355 (2019),pp. 309-319
    [11]
    L.Yan, J.Yu, J.Houston, et al. Green Energy Environ., 2 (2017),pp. 84-99
    [12]
    Y.Xu, Y.Tao, X.Zheng, et al. Adv. Mater., 27 (2016)
    [13]
    A.C.Forse, J.M.Griffin, C.Merlet, et al. Nature Energy, 2 (2017),pp. 16216-16223
    [14]
    B.Sankapal, H.Gajare, D.Dubal, et al. Chem. Eng. J., 247 (2014),pp. 103-110
    [15]
    X.C.Dong, H.Xu, X.W.Wang, et al. ACS Nano, 6 (2012),pp. 3206-3213
    [16]
    X.He, N.Zhang, X.Shao, et al. Chem. Eng. J., 297 (2016),pp. 121-127
    [17]
    W.Du, Y.Lv, H.Lu, et al. Chin. Chem. Lett., 28 (2017),pp. 2285-2289
    [18]
    H.Kashani, L.Chen, Y.Ito, et al. Nano Energy, 19 (2016),pp. 391-400
    [19]
    R.S.Ray, B.Sarma, A.L.Jurovitzki, et al. Chem. Eng. J., 260 (2015),pp. 671-683
    [20]
    V.Sahu, R.B.Marichi, G.Singh, et al. Electrochim. Acta, 240 (2017),pp. 146-154
    [21]
    S.Wang, Z.Ren, J.Li, et al. RSC Adv., 4 (2014),pp. 31300-31307
    [22]
    Y.He, W.Chen, X.Li, et al. ACS Nano, 7 (2013),pp. 174-182
    [23]
    C.Portet, P.L.Taberna, P.Simon, et al. J. Power Sources, 139 (2005),pp. 371-378
    [24]
    H.Zhang, M.Zhu, W.Zhao, et al. Green Energy Environ., 3 (2018),pp. 120-128
    [25]
    C.Merlet, B.Rotenberg, P.A.Madden, et al. Nat. Mater., 11 (2012),pp. 306-310
    [26]
    G.Wang, M.Zhang, H.Xu, et al. J. Energy Chem., 27 (2018),pp. 1219-1224
    [27]
    L.Q.Mai, A.Minhaskhan, X.Tian, et al. Nat. Commun., 4 (2013),pp. 2923-2930
    [28]
    M.Acerce, D.Voiry, M.Chhowalla Nat. Nanotechnol., 10 (2015),pp. 313-318
    [29]
    E.Frackowiak, G.Lota, G.Gryglewicz, et al. Electrochim. Acta, 49 (2004),pp. 515-523
    [30]
    Y.Lu, S.Zhang, J.Yin, et al. Carbon, 124 (2017),pp. 64-71
    [31]
    J.Chmiola, G.Yushin, Y.Gogotsi, et al. Science, 313 (2006),pp. 1760-1763
    [32]
    S.Kondrat, V.Presser, Y.Gogotsi, et al. Energy Environ. Sci., 5 (2012),pp. 6474-6479
    [33]
    L.L.Zhang, X.S.Zhao Chem. Soc. Rev., 38 (2009),pp. 2520-2531
    [34]
    R.Zhang, H.An, Z.Li, et al. Chem. Eng. J., 289 (2016),pp. 85-92
    [35]
    B.Szubzda, A.Szmaja, A.Halama Electrochim. Acta, 86 (2012),pp. 255-259
    [36]
    Y.Zhou, S.L.Candelaria, Q.Liu, et al. J. Mater. Chem. A, 2 (2014),pp. 8472-8482
    [37]
    S.Zhao, Y.Hu, X.Yu, et al. AIChE J., 63 (2016),pp. 1704-1714
    [38]
    F.Meng, Y.Ding Adv. Mater., 23 (2011),pp. 4098-4102
    [39]
    X.Yan, F.Meng, S.Cui, et al. J. Electroanal. Chem., 661 (2011),pp. 44-48
    [40]
    A.Brandt, J.Pires, M.Anouti, et al. Electrochim. Acta, 108 (2013),pp. 226-231
    [41]
    A.Balducci, R.Dugas, P.-L.Taberna, et al. J. Power Sources, 165 (2007),pp. 922-927
    [42]
    F.Meng, X.Yan, J.Liu, et al. Electrochim. Acta, 56 (2011),pp. 4657-4662
    [43]
    L.D.Burke, P.F.Nugent Gold Bull., 30 (1997),pp. 43-53
    [44]
    A.Ferris, S.Garbarino, D.Guay, et al. Adv. Mater., 27 (2016),pp. 6625-6629
    [45]
    R.I.Tucceri, D.Posadas Electrochim. Acta, 32 (1987),pp. 27-31
    [46]
    D.G.Gromadskyi, J.H.Chae, S.A.Norman, et al. Appl. Energy, 159 (2015),pp. 39-50
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (132) PDF downloads(19) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return