Gbenga O. Ogungbesan, Taofik A. Adedosu. Geochemical record for the depositional condition and petroleum potential of the Late Cretaceous Mamu Formation in the western flank of Anambra Basin, Nigeria. Green Energy&Environment, 2020, 5(1): 83-96. doi: 10.1016/j.gee.2019.01.008
Citation: Gbenga O. Ogungbesan, Taofik A. Adedosu. Geochemical record for the depositional condition and petroleum potential of the Late Cretaceous Mamu Formation in the western flank of Anambra Basin, Nigeria. Green Energy&Environment, 2020, 5(1): 83-96. doi: 10.1016/j.gee.2019.01.008

Geochemical record for the depositional condition and petroleum potential of the Late Cretaceous Mamu Formation in the western flank of Anambra Basin, Nigeria

doi: 10.1016/j.gee.2019.01.008
  • Carbonaceous shale exposures of the Late Cretaceous Mamu Formation along Ifon-Uzebba road in western arm (Benin Flank) of Anambra Basin, southwestern Nigeria, were analyzed for bulk organic geochemical, molecular biological and poly-aromatic hydrocarbon (PAH) compositions to investigate the organic matter source, paleo-depositional condition, thermal maturity and petroleum potential of the unit. The bulk organic geochemistry was determined using Leco and Rock–Eval pyrolysis analyses while the biomarkers and PAH compositions were investigated using gas chromatography-mass spectrometer (GC–MS). The bulk organic geochemical parameters of the shale samples showed total organic carbon (TOC) (1.11–6.03 wt%), S2 (0.49–11.73 mg HC/g Rock), HI (38–242 mg HC/g TOC) and Tmax (425–435 °C) indicating good to excellent hydrocarbon source-rock. Typical HI-Tmax diagram revealed the shale samples mostly in the gas-prone Type III kerogen region with few gas and oil-prone Type II-III kerogen. The investigated biomarkers (n-alkane, isoprenoid, terpane, hopane, sterane) and PAH (alkylnaphthalene, methylphenanthrene and dibenzothiophene) indicated that the carbonaceous shales contain mix contributions of terrestrial and marine organic matter inputs that were deposited in a deltaic to shallow marine settings and preserved under relatively anoxic to suboxic conditions. Thermal maturity parameters computed from Rock–Eval pyrolysis, biomarkers (hopane, sterane) and PAH (alkylnaphthalene, alkylphenanthrene, alkyldibenzothiophene) suggested that these carbonaceous shales in Anambra Basin have entered an early-mature stage for hydrocarbon generation. This is also supported by fluoranthene/pyrene (0.27–1.12), fluoranthene/(fluoranthene + pyrene) (0.21–0.53) ratios and calculated vitrinite reflectance values (0.49–0.63% Ro) indicative that these shales have mostly reached early oil window maturity, thereby having low hydrocarbon source potential.

     

  • loading
  • [1]
    A. Whiteman, Nigeria: Its Petroleum Geology, Resources and Potential Springer, Dordrecht, 1982.
    [2]
    O.K. Agagu, Geology and Petroleum Potentials of Santonian to Maestrichtian Sediments in the Anambra basin–Eastern Nigeria. Unpub. Ph. D. thesis. University of Ibadan: Ibadan, Nigeria. 1978.
    [3]
    O.K.Agagu, C.M.Ekweozor J. Min. Geol., 19 (1982),pp. 52-61
    [4]
    I.M.Akaegbobi, M.Schmitt Niger. Assoc. Pet. Explor. Bull., 13 (1998),pp. 1-19
    [5]
    I.M.Akaegbobi, J.I.Nwachukwu, M.Schmitt
    [6]
    S.O.Akande, I.B.Ogunmoyero, H.I.Petersen, et al. J. Petrol. Geol., 30 (2000),pp. 303-324
    [7]
    J.E.Ogala, I.M.Akaegbobi Earth Sci. Res. J., 18 (2014),pp. 51-62
    [8]
    K.Burke, T.F.J.Dessauvagie, A.J.Whiteman
    [9]
    R.C.Murat, T.F.J.Dessauvigie
    [10]
    K.C.Burke S. Afr. J. Geol., 99 (1996),pp. 341-409
    [11]
    R.A.Reyment
    [12]
    S.W.Petters J. Geol., 86 (1978),pp. 311-322
    [13]
    S.O.Akande, B.D.Erdtmann AAPG Bull., 82 (1998),pp. 1191-1206
    [14]
    M.K.Onuoha Niger. Assoc. Pet. Explor. Bull., 2 (1986),pp. 6-17
    [15]
    C.S.Nwajide, T.J.A.Reijers
    [16]
    N.G.Obaje, H.Wehmer, G.Scheeder, et al. Am. Assoc. Pet. Geol. Bull., 88 (2004),pp. 325-353
    [17]
    O.K.Agagu, E.A.Fayose, S.W.Petters J. Min. Geol., 22 (1985),pp. 25-36
    [18]
    J.Espitalié, G.Deroo, F.Marquis Rev. Inst. Fr. Petrol, 41 (1986),pp. 73-89
    [19]
    K.E.Peters AAPG Bull., 70 (1986),pp. 318-329
    [20]
    D.M.Jarvie
    [21]
    B.P.Tissot, D.H.Welte
    [22]
    F.F.Langford, M.M.Blanc-Valleron AAPG Bull., 74 (1990),pp. 799-804
    [23]
    P.A.Cranwell, G.Eglinton, N.Robinson Org. Geochem., 11 (1987),pp. 513-527
    [24]
    P.A.Meyers Org. Geochem., 27 (1997),pp. 213-250
    [25]
    K.E.Peters, C.C.Walters, J.M.Moldowan
    [26]
    B.M.Didyk, B.R.T.Simoneit, S.C.Brassell, et al. Nature, 272 (1978),pp. 216-222
    [27]
    T.G.Powell Mar. Petrol. Geol., 3 (1986),pp. 200-219
    [28]
    K.E.Peters, J.M.Moldowan
    [29]
    K.Sawada Isl. Arc, 15 (2006),pp. 517-536
    [30]
    E.E.Bray, E.D.Evans Geochem. Cosmochim. Acta, 22 (1961),pp. 2-15
    [31]
    J.M.Hunt
    [32]
    J.M.Moldowan, P.Sundararaman, M.Schoell Org. Geochem., 10 (1985),pp. 915-926
    [33]
    J.Rinna, J.Rullkötter, R.Stein Proc. Ocean Drill. Progr. Sci. Res., 151 (1996),pp. 407-414
    [34]
    C.M.Ekweozor, N.Telnaes Org. Geochem., 16 (1990),pp. 401-413
    [35]
    J.M.Moldowan, J.Dahl, B.J.Huizinga, et al. Science, 265 (1994),pp. 768-771
    [36]
    J.S.Sinninghe Damsté, F.Kenig, M.P.Koopmans, et al. Geochem. Cosmochim. Acta, 59 (1995),pp. 1895-1900
    [37]
    H.L.ten Haven, J.W.de Leeuw, J.Rullkotter, et al.
    [38]
    O.Seiskind, G.Joly, P.Alberecht Geochem. Cosmochim. Acta, 43 (1979),pp. 1675-1679
    [39]
    W.K.Seifert, J.M.Moldowan Geochem. Cosmochim. Acta, 42 (1978),pp. 77-95
    [40]
    W.Y.Huang, W.G.Meinschein Geochem. Cosmochim. Acta, 43 (1979),pp. 739-745
    [41]
    M.G.Strachan, R.Alexander, R.I.Kagi Geochem. Cosmochim. Acta, 52 (1988),pp. 1255-1264
    [42]
    S.D.Killops, V.J.Killops
    [43]
    T.A.Adedosu, O.O.Sonibare, J.Tuo, et al. Energy Sources, 33 (2011),pp. 145-155
    [44]
    M.Radke, D.H.Welte, H.Willsch Org. Geochem., 10 (1986),pp. 51-63
    [45]
    B.G.K.van Aarssen, R.Alexander, R.I.Kagi Geochem. Cosmochim. Acta, 64 (2000),pp. 1417-1424
    [46]
    B.R.T.Simoneit, J.O.Grimalt, T.G.Wang, et al. Org. Geochem., 10 (1986),pp. 877-889
    [47]
    H.Budzinski, P.H.Garrigues, J.Connan, et al. Geochem. Cosmochim. Acta, 59 (1995),pp. 2043-2056
    [48]
    M.Radke, H.Willsch Geochem. Cosmochim. Acta, 58 (1994),pp. 5223-5244
    [49]
    M.Radke, S.P.Vriend, L.R.Ramanampisoa Geochem. Cosmochim. Acta, 64 (2000),pp. 275-286
    [50]
    W.B.Hughes, A.G.Holba, L.I.P.Dzhou Geochem. Cosmochim. Acta, 59 (1995),pp. 3581-3598
    [51]
    M.Radke, J.Rullkotter, S.P.Vriend Geochem. Cosmochim. Acta, 58 (1994),pp. 3675-3689
    [52]
    M.Radke
    [53]
    B.K.G.van Aarssen, T.P.Bastow, R.Alexander, et al. Org. Geochem., 30 (1999),pp. 1213-1227
    [54]
    A.Chakhmakhchev, M.Suzuki, K.Takayama Org. Geochem., 26 (1997),pp. 483-490
    [55]
    S.D.Killops, M.S.Massoud Org. Geochem., 18 (1992),pp. 1-7
    [56]
    C.Jiang, R.Alexander, R.I.Kagi, et al. Org. Geochem., 29 (1998),pp. 1721-1735
    [57]
    M.B.Yunker, R.W.Macdonald, R.Vingarzan, et al. Org. Geochem., 33 (2002),pp. 489-515
    [58]
    K.Grice, B.Nabbefeld, E.Maslen Org. Geochem., 38 (2007),pp. 1795-1803
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (61) PDF downloads(18) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return