Gbenga O. Ogungbesan, Taofik A. Adedosu. Geochemical record for the depositional condition and petroleum potential of the Late Cretaceous Mamu Formation in the western flank of Anambra Basin, Nigeria. Green Energy&Environment, 2020, 5(1): 83-96. doi: 10.1016/j.gee.2019.01.008
Citation: Gbenga O. Ogungbesan, Taofik A. Adedosu. Geochemical record for the depositional condition and petroleum potential of the Late Cretaceous Mamu Formation in the western flank of Anambra Basin, Nigeria. Green Energy&Environment, 2020, 5(1): 83-96. doi: 10.1016/j.gee.2019.01.008

Geochemical record for the depositional condition and petroleum potential of the Late Cretaceous Mamu Formation in the western flank of Anambra Basin, Nigeria

doi: 10.1016/j.gee.2019.01.008
  • Carbonaceous shale exposures of the Late Cretaceous Mamu Formation along Ifon-Uzebba road in western arm (Benin Flank) of Anambra Basin, southwestern Nigeria, were analyzed for bulk organic geochemical, molecular biological and poly-aromatic hydrocarbon (PAH) compositions to investigate the organic matter source, paleo-depositional condition, thermal maturity and petroleum potential of the unit. The bulk organic geochemistry was determined using Leco and Rock–Eval pyrolysis analyses while the biomarkers and PAH compositions were investigated using gas chromatography-mass spectrometer (GC–MS). The bulk organic geochemical parameters of the shale samples showed total organic carbon (TOC) (1.11–6.03 wt%), S2 (0.49–11.73 mg HC/g Rock), HI (38–242 mg HC/g TOC) and Tmax (425–435 °C) indicating good to excellent hydrocarbon source-rock. Typical HI-Tmax diagram revealed the shale samples mostly in the gas-prone Type III kerogen region with few gas and oil-prone Type II-III kerogen. The investigated biomarkers (n-alkane, isoprenoid, terpane, hopane, sterane) and PAH (alkylnaphthalene, methylphenanthrene and dibenzothiophene) indicated that the carbonaceous shales contain mix contributions of terrestrial and marine organic matter inputs that were deposited in a deltaic to shallow marine settings and preserved under relatively anoxic to suboxic conditions. Thermal maturity parameters computed from Rock–Eval pyrolysis, biomarkers (hopane, sterane) and PAH (alkylnaphthalene, alkylphenanthrene, alkyldibenzothiophene) suggested that these carbonaceous shales in Anambra Basin have entered an early-mature stage for hydrocarbon generation. This is also supported by fluoranthene/pyrene (0.27–1.12), fluoranthene/(fluoranthene + pyrene) (0.21–0.53) ratios and calculated vitrinite reflectance values (0.49–0.63% Ro) indicative that these shales have mostly reached early oil window maturity, thereby having low hydrocarbon source potential.

     

  • [1]
    A. Whiteman, Nigeria: Its Petroleum Geology, Resources and Potential Springer, Dordrecht, 1982.
    [2]
    O.K. Agagu, Geology and Petroleum Potentials of Santonian to Maestrichtian Sediments in the Anambra basin–Eastern Nigeria. Unpub. Ph. D. thesis. University of Ibadan: Ibadan, Nigeria. 1978.
    [3]
    O.K.Agagu, C.M.Ekweozor J. Min. Geol., 19 (1982),pp. 52-61
    [4]
    I.M.Akaegbobi, M.Schmitt Niger. Assoc. Pet. Explor. Bull., 13 (1998),pp. 1-19
    [5]
    I.M.Akaegbobi, J.I.Nwachukwu, M.Schmitt
    [6]
    S.O.Akande, I.B.Ogunmoyero, H.I.Petersen, et al. J. Petrol. Geol., 30 (2000),pp. 303-324
    [7]
    J.E.Ogala, I.M.Akaegbobi Earth Sci. Res. J., 18 (2014),pp. 51-62
    [8]
    K.Burke, T.F.J.Dessauvagie, A.J.Whiteman
    [9]
    R.C.Murat, T.F.J.Dessauvigie
    [10]
    K.C.Burke S. Afr. J. Geol., 99 (1996),pp. 341-409
    [11]
    R.A.Reyment
    [12]
    S.W.Petters J. Geol., 86 (1978),pp. 311-322
    [13]
    S.O.Akande, B.D.Erdtmann AAPG Bull., 82 (1998),pp. 1191-1206
    [14]
    M.K.Onuoha Niger. Assoc. Pet. Explor. Bull., 2 (1986),pp. 6-17
    [15]
    C.S.Nwajide, T.J.A.Reijers
    [16]
    N.G.Obaje, H.Wehmer, G.Scheeder, et al. Am. Assoc. Pet. Geol. Bull., 88 (2004),pp. 325-353
    [17]
    O.K.Agagu, E.A.Fayose, S.W.Petters J. Min. Geol., 22 (1985),pp. 25-36
    [18]
    J.Espitalié, G.Deroo, F.Marquis Rev. Inst. Fr. Petrol, 41 (1986),pp. 73-89
    [19]
    K.E.Peters AAPG Bull., 70 (1986),pp. 318-329
    [20]
    D.M.Jarvie
    [21]
    B.P.Tissot, D.H.Welte
    [22]
    F.F.Langford, M.M.Blanc-Valleron AAPG Bull., 74 (1990),pp. 799-804
    [23]
    P.A.Cranwell, G.Eglinton, N.Robinson Org. Geochem., 11 (1987),pp. 513-527
    [24]
    P.A.Meyers Org. Geochem., 27 (1997),pp. 213-250
    [25]
    K.E.Peters, C.C.Walters, J.M.Moldowan
    [26]
    B.M.Didyk, B.R.T.Simoneit, S.C.Brassell, et al. Nature, 272 (1978),pp. 216-222
    [27]
    T.G.Powell Mar. Petrol. Geol., 3 (1986),pp. 200-219
    [28]
    K.E.Peters, J.M.Moldowan
    [29]
    K.Sawada Isl. Arc, 15 (2006),pp. 517-536
    [30]
    E.E.Bray, E.D.Evans Geochem. Cosmochim. Acta, 22 (1961),pp. 2-15
    [31]
    J.M.Hunt
    [32]
    J.M.Moldowan, P.Sundararaman, M.Schoell Org. Geochem., 10 (1985),pp. 915-926
    [33]
    J.Rinna, J.Rullkötter, R.Stein Proc. Ocean Drill. Progr. Sci. Res., 151 (1996),pp. 407-414
    [34]
    C.M.Ekweozor, N.Telnaes Org. Geochem., 16 (1990),pp. 401-413
    [35]
    J.M.Moldowan, J.Dahl, B.J.Huizinga, et al. Science, 265 (1994),pp. 768-771
    [36]
    J.S.Sinninghe Damsté, F.Kenig, M.P.Koopmans, et al. Geochem. Cosmochim. Acta, 59 (1995),pp. 1895-1900
    [37]
    H.L.ten Haven, J.W.de Leeuw, J.Rullkotter, et al.
    [38]
    O.Seiskind, G.Joly, P.Alberecht Geochem. Cosmochim. Acta, 43 (1979),pp. 1675-1679
    [39]
    W.K.Seifert, J.M.Moldowan Geochem. Cosmochim. Acta, 42 (1978),pp. 77-95
    [40]
    W.Y.Huang, W.G.Meinschein Geochem. Cosmochim. Acta, 43 (1979),pp. 739-745
    [41]
    M.G.Strachan, R.Alexander, R.I.Kagi Geochem. Cosmochim. Acta, 52 (1988),pp. 1255-1264
    [42]
    S.D.Killops, V.J.Killops
    [43]
    T.A.Adedosu, O.O.Sonibare, J.Tuo, et al. Energy Sources, 33 (2011),pp. 145-155
    [44]
    M.Radke, D.H.Welte, H.Willsch Org. Geochem., 10 (1986),pp. 51-63
    [45]
    B.G.K.van Aarssen, R.Alexander, R.I.Kagi Geochem. Cosmochim. Acta, 64 (2000),pp. 1417-1424
    [46]
    B.R.T.Simoneit, J.O.Grimalt, T.G.Wang, et al. Org. Geochem., 10 (1986),pp. 877-889
    [47]
    H.Budzinski, P.H.Garrigues, J.Connan, et al. Geochem. Cosmochim. Acta, 59 (1995),pp. 2043-2056
    [48]
    M.Radke, H.Willsch Geochem. Cosmochim. Acta, 58 (1994),pp. 5223-5244
    [49]
    M.Radke, S.P.Vriend, L.R.Ramanampisoa Geochem. Cosmochim. Acta, 64 (2000),pp. 275-286
    [50]
    W.B.Hughes, A.G.Holba, L.I.P.Dzhou Geochem. Cosmochim. Acta, 59 (1995),pp. 3581-3598
    [51]
    M.Radke, J.Rullkotter, S.P.Vriend Geochem. Cosmochim. Acta, 58 (1994),pp. 3675-3689
    [52]
    M.Radke
    [53]
    B.K.G.van Aarssen, T.P.Bastow, R.Alexander, et al. Org. Geochem., 30 (1999),pp. 1213-1227
    [54]
    A.Chakhmakhchev, M.Suzuki, K.Takayama Org. Geochem., 26 (1997),pp. 483-490
    [55]
    S.D.Killops, M.S.Massoud Org. Geochem., 18 (1992),pp. 1-7
    [56]
    C.Jiang, R.Alexander, R.I.Kagi, et al. Org. Geochem., 29 (1998),pp. 1721-1735
    [57]
    M.B.Yunker, R.W.Macdonald, R.Vingarzan, et al. Org. Geochem., 33 (2002),pp. 489-515
    [58]
    K.Grice, B.Nabbefeld, E.Maslen Org. Geochem., 38 (2007),pp. 1795-1803
  • Relative Articles

    [1]Wei Li, Shu Zhang, Xinya Bu, Jing Luo, Yi Zhang, Mengyu Yan, Ting Quan, Yanli Zhu. Preparation and performance of highly-conductive dual-doped Li7La3Zr2O12 solid electrolytes for thermal batteries.  Green Energy&Environment. doi: 10.1016/j.gee.2024.04.002
    [2]Xiaoqian Zhang, Haishan Zhang, Guowen Zhou, Zhiping Su, Xiaohui Wang. Flexible, thermal processable, self-healing, and fully bio-based starch plastics by constructing dynamic imine network.  Green Energy&Environment, 2024, 9(10): 1610-1618. doi: 10.1016/j.gee.2023.08.002
    [3]Xing Fu, Yexin Hu, Ping Hu, Hui Li, Shuguang Xu, Liangfang Zhu, Changwei Hu. Mapping out the reaction network of humin formation at the initial stage of fructose dehydration in water.  Green Energy&Environment, 2024, 9(6): 1016-1026. doi: 10.1016/j.gee.2022.09.012
    [4]Jianjun Chen, Rongqiang Yin, Gongda Chen, Junyu Lang, Xiaoping Chen, Xuefeng Chu, Junhua Li. Selective capture of Tl2O from flue gas with formation of p-n junction on V2O5-WO3/TiO2 catalyst under working conditions.  Green Energy&Environment, 2023, 8(1): 4-9. doi: 10.1016/j.gee.2021.12.001
    [5]Chengwei Ma, Xinyu Zhang, Chengcai Liu, Yuanxing Zhang, Yuanshen Wang, Ling Liu, Zhikun Zhao, Borong Wu, Daobin Mu. Nano silica aerogel-induced formation of an organic/alloy biphasic interfacial layer enables construction of stable high-energy lithium metal batteries.  Green Energy&Environment, 2023, 8(4): 1071-1080. doi: 10.1016/j.gee.2021.12.006
    [6]Zhuoya Wang, Kaihang Zhang, Bing Zhang, Zheming Tong, Shulan Mao, Hao Bai, Yingying Lu. Ultrafast battery heat dissipation enabled by highly ordered and interconnected hexagonal boron nitride thermal conductive composites.  Green Energy&Environment, 2022, 7(6): 1401-1410. doi: 10.1016/j.gee.2022.02.007
    [7]Ning Wei, Yang Chen, Kun Cai, Yingyan Zhang, Qingxiang Pei, Jin-Cheng Zheng, Yiu-Wing Mai, Junhua Zhao. Unusual thermal properties of graphene origami crease: A molecular dynamics study.  Green Energy&Environment, 2022, 7(1): 86-94. doi: 10.1016/j.gee.2020.07.026
    [8]Shichao Wang, Jixing Bai, Mugaanire Tendo Innocent, Qianqian Wang, Hengxue Xiang, Jianguo Tang, Meifang Zhu. Lignin-based carbon fibers: Formation, modification and potential applications.  Green Energy&Environment, 2022, 7(4): 578-605. doi: 10.1016/j.gee.2021.04.006
    [9]Huaiwei Shi, Xiang Zhang, Kai Sundmacher, Teng Zhou. Model-based optimal design of phase change ionic liquids for efficient thermal energy storage.  Green Energy&Environment, 2021, 6(3): 392-404. doi: 10.1016/j.gee.2020.12.017
    [10]Damien Mathis, Pierre Blanchet, Véronic Landry, Philippe Lagière. Thermal characterization of bio-based phase changing materials in decorative wood-based panels for thermal energy storage.  Green Energy&Environment, 2019, 4(1): 56-65. doi: 10.1016/j.gee.2018.05.004
    [11]Jacqueline González González, Mónica Nájera-Lara, Varinia López-Ramírez, Juan Antonio Ramírez-Vázquez, José J.N. Segoviano-Garfias. Spectrophotometric determination of the formation constants of Calcium(II) complexes with 1,2-ethylenediamine, 1,3-propanediamine and 1,4-butanediamine in acetonitrile.  Green Energy&Environment, 2017, 2(1): 51-57. doi: 10.1016/j.gee.2017.01.002
    [12]Xuan Wu, Jie Xu, George Y. Chen, Rong Fan, Xiaokong Liu, Haolan Xu. Harvesting, sensing and regulating light based on photo-thermal effect of Cu@CuO mesh.  Green Energy&Environment, 2017, 2(4): 387-392. doi: 10.1016/j.gee.2017.02.002
    [13]Ee Teng Kho, Tze Hao Tan, Emma Lovell, Roong Jien Wong, Jason Scott, Rose Amal. A review on photo-thermal catalytic conversion of carbon dioxide.  Green Energy&Environment, 2017, 2(3): 204-217. doi: 10.1016/j.gee.2017.06.003
    [14]Stepan D. Bazhenov, Ilya L. Borisov, Danila S. Bakhtin, Anastasia N. Rybakova, Valery S. Khotimskiy, Sergey P. Molchanov, Vladimir V. Volkov. High-permeance crosslinked PTMSP thin-film composite membranes as supports for CO2 selective layer formation.  Green Energy&Environment, 2016, 1(3): 235-245. doi: 10.1016/j.gee.2016.10.002
  • Cited by

    Periodical cited type(15)

    1. Omietimi, E.J., Lenhardt, N., Yang, R. et al. Geochemistry of the Late Cretaceous to Paleogene sedimentary deposits of the SW Anambra Basin (Nigeria): Implications for provenance, tectonic conditions, and hydrothermal influence. Journal of African Earth Sciences, 2024, 219: 105399. doi:10.1016/j.jafrearsci.2024.105399
    2. Ejeh, O.I., Etobro, I.A.A., Perleros, K. et al. Hydrocarbon generation potential of Campano-Maastrichtian to Paleogene shales in the Benin Flank of the Anambra Basin, SW Nigeria. Energy Geoscience, 2024, 5(3): 100286. doi:10.1016/j.engeos.2024.100286
    3. Omietimi, E.J., Lenhardt, N., Yang, R. et al. Multi-Parameter Investigation of Cretaceous to Palaeocene Sedimentary Sequences in the Anambra and Niger Delta Basins, Nigeria: Organic Matter Characterisation, Palynofacies and Implications for Palaeoclimate and Sea-Level Changes. Geological Journal, 2024. doi:10.1002/gj.5084
    4. Abdullahi, M., Kumar, R., Idi, B.Y. et al. Analysis of recent airborne gravity and magnetic data for the interpretation of basement structures underneath the south–western Benue trough using source edge detector filters. Acta Geophysica, 2023, 71(4): 1595-1606. doi:10.1007/s11600-023-01060-1
    5. Yu, J., Su, X., Shi, Z. et al. Comparative metabolomic reveals chemotaxonomic markers of resin fossils for identification of botanical origins. International Journal of Coal Geology, 2023, 270: 104230. doi:10.1016/j.coal.2023.104230
    6. Akintola, G.O., Amponsah-Dacosta, F., Rupprecht, S. et al. Petrographic, mineralogical, morphological and organic constraints of the Permian shaly-coal in the Tuli Basin of Limpopo-Area Karoo-Aged basin, South Africa: Implication for potential gas generation. Heliyon, 2023, 9(3): e14446. doi:10.1016/j.heliyon.2023.e14446
    7. Ilevbare, M., Rita, A.A. Geochemical Discriminant for Provenance, Source Area Weathering and Paleoredox of Some Shale Deposits in Edo State, Nigeria. Jordan Journal of Earth and Environmental Sciences, 2023, 14(4): 258-267.
    8. Fajemila, O.T., Olayiwola, M.A., Aturamu, A.O. et al. Benthic foraminifera from the Campanian-Maastrichtian shales of the Mamu Formation at the Benin flank of the Anambra Basin, southern Nigeria: A paleoenvironmental assessment. Neues Jahrbuch fur Geologie und Palaontologie - Abhandlungen, 2023, 307(3): 235-248. doi:10.1127/njgpa/2023/1123
    9. Ogala, J.E.. Depositional conditions of the Upper Cretaceous shales from the Anambra Basin, SE Nigeria: Constraints from mineralogy and geochemistry. Journal of African Earth Sciences, 2022, 196: 104670. doi:10.1016/j.jafrearsci.2022.104670
    10. Omietimi, E.J., Lenhardt, N., Yang, R. et al. Sedimentary geochemistry of Late Cretaceous-Paleocene deposits at the southwestern margin of the Anambra Basin (Nigeria): Implications for paleoenvironmental reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 600: 111059. doi:10.1016/j.palaeo.2022.111059
    11. Ezeh, A.V., Ehinola, O.A., Boboye, O.A. et al. Comparative studies on hydrocarbon potential of Maastrichtian Mamu Formation on the western and eastern parts of Anambra Basin, Nigeria. Petroleum and Coal, 2022, 64(1): 41-46.
    12. Zhang, T.J., Zhang, J., Liu, F. Experimental study on the structural evolution and gas control of upper paleozoic gas reservoirs in the northern ordos basin, China. Fresenius Environmental Bulletin, 2021, 29(11): 10278-10286.
    13. Ejeh, O.I.. Geochemistry of rocks (Late Cretaceous) in the Anambra Basin, SE Nigeria: insights into provenance, tectonic setting, and other palaeo-conditions. Heliyon, 2021, 7(10): e08110. doi:10.1016/j.heliyon.2021.e08110
    14. Abdullahi, M., Kumar, R. Basement and Structure Near the Southwestern Margin of the Lower Benue Trough Between, and Including, the Anambra Basin and Afikpo Syncline, as Derived from Aeromagnetic and Gravity Data. Pure and Applied Geophysics, 2021, 178(10): 3953-3970. doi:10.1007/s00024-021-02801-3
    15. Akintola, G.O., Ikhane, P.R., Amponsah-Dacosta, F. et al. Geochemical evaluation of the carbonaceous shale of the upper cretaceous Anambra Basin for potential gas generation, Nigeria. Arabian Journal of Geosciences, 2021, 14(6): 456. doi:10.1007/s12517-021-06813-0

    Other cited types(0)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (67) PDF downloads(18) Cited by(15)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return